zoukankan      html  css  js  c++  java
  • POJ2230 Watchcow

    POJ - 2230 

    Watchcow

    Bessie's been appointed the new watch-cow for the farm. Every night, it's her job to walk across the farm and make sure that no evildoers are doing any evil. She begins at the barn, makes her patrol, and then returns to the barn when she's done. 

    If she were a more observant cow, she might be able to just walk each of M (1 <= M <= 50,000) bidirectional trails numbered 1..M between N (2 <= N <= 10,000) fields numbered 1..N on the farm once and be confident that she's seen everything she needs to see. But since she isn't, she wants to make sure she walks down each trail exactly twice. It's also important that her two trips along each trail be in opposite directions, so that she doesn't miss the same thing twice. 

    A pair of fields might be connected by more than one trail. Find a path that Bessie can follow which will meet her requirements. Such a path is guaranteed to exist.

    Input

    * Line 1: Two integers, N and M. 

    * Lines 2..M+1: Two integers denoting a pair of fields connected by a path.

    Output

    * Lines 1..2M+1: A list of fields she passes through, one per line, beginning and ending with the barn at field 1. If more than one solution is possible, output any solution.

    Sample Input

    4 5
    1 2
    1 4
    2 3
    2 4
    3 4

    Sample Output

    1
    2
    3
    4
    2
    1
    4
    3
    2
    4
    1

    Hint

    OUTPUT DETAILS: 

    Bessie starts at 1 (barn), goes to 2, then 3, etc...
    刷一本书,就是图论及其应用
    第一道题就是求欧拉回路,直接写邻接表简单些,好像我用vector写的不太顺利
    就是dfs序
    #include<stdio.h>
    #include<string.h>
    const int M=100007;
    int vis[M],head[M],path[M];
    int n,m,tot,num;
    struct Node
    {
        int to,nxt;
    } E[M];
    void add(int a,int b)
    {
        E[tot].to=b,E[tot].nxt=head[a],head[a]=tot++;
    }
    void dfs(int u)
    {
        for(int v=head[u],nxt; v!=-1; v=E[v].nxt)
        {
            nxt=E[v].to;
            if(!vis[v])
                vis[v]=1,dfs(nxt);
        }
        path[num++]=u;
    }
    int main()
    {
        while(scanf("%d%d",&n,&m)!=EOF)
        {
            tot=num=0;
            memset(vis,0,sizeof(vis));
            memset(head,-1,sizeof(head));
            for(int i=1,a,b; i<=m; i++)
                scanf("%d%d",&a,&b),add(a,b),add(b,a);
            dfs(1);
            for(int i=0; i<num; i++)
                printf("%d
    ",path[i]);
        }
        return 0;
    }

    直接vector的

    #include<stdio.h>
    #include<vector>
    using namespace std;
    const int N=1e4+5;
    int n,m;
    struct Node
    {
        int to,f;
    } t;
    vector<Node>G[N];
    void dfs(int u)
    {
        int l=G[u].size();
        for(int i=0,v; i<l; i++)
        {
            if(!G[u][i].f)G[u][i].f=1,dfs(G[u][i].to);
        }
        printf("%d
    ",u);
    }
    int main()
    {
        scanf("%d%d",&n,&m);
        t.f=0;
        for(int i=1,a,b; i<=m; i++)
        {
            scanf("%d%d",&a,&b);
            t.to=b;
            G[a].push_back(t);
            t.to=a;
            G[b].push_back(t);
        }
        dfs(1);
        return 0;
    }
  • 相关阅读:
    CentOS 6找不到partprobe命令的解决方法
    RTL源码归类与路径
    拓扑排序
    Char、AnsiChar、WideChar、PChar、PAnsiChar、PWideChar 的区别
    Delphi Byte与数据类型之间的转换
    Delphi byte[]转换为int
    Delphi Byte数组与Int String之间的相互转换
    delphi TTcpClient TTcpServer分析
    Delph7中TcpClient和TcpServer用法分析
    动态数组的使用
  • 原文地址:https://www.cnblogs.com/BobHuang/p/8166885.html
Copyright © 2011-2022 走看看