zoukankan      html  css  js  c++  java
  • [HDU5001]Walk

    Problem Description
    I used to think I could be anything, but now I know that I couldn't do anything. So I started traveling.

    The nation looks like a connected bidirectional graph, and I am randomly walking on it. It means when I am at node i, I will travel to an adjacent node with the same probability in the next step. I will pick up the start node randomly (each node in the graph has the same probability.), and travel for d steps, noting that I may go through some nodes multiple times.

    If I miss some sights at a node, it will make me unhappy. So I wonder for each node, what is the probability that my path doesn't contain it.
     
    Input
    The first line contains an integer T, denoting the number of the test cases.

    For each test case, the first line contains 3 integers n, m and d, denoting the number of vertices, the number of edges and the number of steps respectively. Then m lines follows, each containing two integers a and b, denoting there is an edge between node a and node b.

    T<=20, n<=50, n-1<=m<=n*(n-1)/2, 1<=d<=10000. There is no self-loops or multiple edges in the graph, and the graph is connected. The nodes are indexed from 1.
     
    Output
    For each test cases, output n lines, the i-th line containing the desired probability for the i-th node.

    Your answer will be accepted if its absolute error doesn't exceed 1e-5.
     
    Sample Input
    2 5 10 100 1 2 2 3 3 4 4 5 1 5 2 4 3 5 2 5 1 4 1 3 10 10 10 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 4 9
     
    Sample Output
    0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.6993317967 0.5864284952 0.4440860821 0.2275896991 0.4294074591 0.4851048742 0.4896018842 0.4525044250 0.3406567483 0.6421630037
     
    Source
     
     

     
     
    题意:n个点,m条边的无向图,你随机的从一个点开始,走k步,问你对于每一个点,它不被经过的概率是多少。
    我们这样考虑,一个点不被经过的概率就是1-这个点经过的概率,所以就设f[i][j]为已经走了i步, 不经过x点,走到第j个点的概率。
    $large f[i+1][to]+=frac{1}{deg[j]}f[i][j]$
    于是对于每一个点我们都跑一遍dp。
    然后每个点x的答案就是1-∑dp[i][x].
    然后 就水过去了
     
     

     
     
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <queue>
    using namespace std;
    #define gc getchar()
    inline int read(){
        int res=0;char ch=gc;
        while(!isdigit(ch))ch=gc;
        while(isdigit(ch)){res=(res<<3)+(res<<1)+(ch^48);ch=gc;}
        return res;
    }
    #undef gc
    
    int T, n, m, K;
    struct edge{
        int nxt, to;
    }ed[2505];
    int head[55], cnt;
    inline void add(int x, int y)
    {
        ed[++cnt] = (edge){head[x], y};
        head[x] = cnt;
    }
    int deg[55];
    double f[10005][55];
    
    inline double DP(int cur)
    {
        memset(f, 0, sizeof f);
        double res = 0;
        for (int i = 1 ; i <= n ; i ++) f[0][i] = (double)(1.0/(double)n);
        for (int j = 0 ; j <= K ; j ++)
        {
            for (int x = 1 ; x <= n ; x ++)
            {
                if (x == cur) continue;
                for (int i = head[x] ; i ; i = ed[i].nxt)
                {
                    int to = ed[i].to;
                    f[j+1][to] += (double)(f[j][x] / (double)deg[x]);
                }
            }
            res += f[j][cur];
        }
        return res;
    }
    
    int main()
    {
        T = read();
        while(T--)
        {
            memset(head, 0, sizeof head);
            memset(deg, 0, sizeof deg);
            cnt = 0;
            n = read(), m = read(), K = read();
            for (int i = 1 ; i <= m ; i ++)
            {
                int x = read(), y = read();
                add(x, y), add(y, x);
                deg[x]++, deg[y]++;
            }
            for (int i = 1 ; i <= n ; i ++)
                printf("%.10lf
    ", 1 - DP(i));
        }
        return 0;
    }
  • 相关阅读:
    javascript模板方法模式
    设计模式之原型模式
    es6 工厂模式
    js建筑者模式
    程序运行时的堆栈与数据结构中的堆栈有何分别
    POJO、JavaBean、DTO的区别
    AnnotationTransactionAttributeSource is only available on Java 1.5 and higher
    进程pid理解
    Tasklist使用详解
    day 16 类的成员
  • 原文地址:https://www.cnblogs.com/BriMon/p/9393011.html
Copyright © 2011-2022 走看看