zoukankan      html  css  js  c++  java
  • [CF468D] Tree

    Little X has a tree consisting of n nodes (they are numbered from 1 to n). Each edge of the tree has a positive length. Let's define the distance between two nodes v and u (we'll denote it d(v, u)) as the sum of the lengths of edges in the shortest path between v and u.

    A permutation p is a sequence of n distinct integers p1, p2, ..., pn (1 ≤ pi ≤ n). Little X wants to find a permutation p such that sum is maximal possible. If there are multiple optimal permutations, he wants to find the lexicographically smallest one. Help him with the task!

    Input

    The first line contains an integer n (1 ≤ n ≤ 105).

    Each of the next n - 1 lines contains three space separated integers ui,  vi, wi (1 ≤  ui,  vi ≤  n; 1 ≤  wi ≤  105), denoting an edge between nodes ui and vi with length equal to wi.

    It is guaranteed that these edges form a tree.

    Output

    In the first line print the maximum possible value of the described sum. In the second line print n integers, representing the lexicographically smallest permutation.

    Examples
    Input
    Copy
    2
    1 2 3
    Output
    Copy
    6
    2 1
    Input
    Copy
    5
    1 2 2
    1 3 3
    2 4 4
    2 5 5
    Output
    Copy
    32
    2 1 4 5 3




    写了一上午,我太辣鸡了。
    dis(i,pi)=(depi+deppi2×deplca(i,pi))=2×depi2×deplca(i,pi)
    前面一定是不变的, 后面我们可以把它降低到0, 我们选择树的重心作为根,可以把后边变成0.
    第一问解决。把一个点看成两个, 一个是入点,一个是出点.
    记为in[x], out[x];要满足子树x可以匹配到答案, 我们必须让 $large in[x] + out[x] <= sum in[i]$

    $in[x]$
    $ f[i, j] = $
    $LARGE f[i, j]=frac{sum_{to}^{ } f[nxt[nxt[i,j],j],to] + f[nxt[nxt[i,j],j],j]}{deg[j]+1} + 1$
    latex炸了不写了




    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <algorithm>
    #include <set>
    using namespace std;
    inline int read() {
        int res = 0;char ch=getchar();
        while(!isdigit(ch)) ch=getchar();
        while(isdigit(ch)) res=(res<<3)+(res<<1)+(ch^48), ch=getchar();
        return res;
    }
    #define reg register
    #define N 100005
    #define ll long long
    
    int n;
    struct edge {
        int nxt, to, val;
    }ed[N*2];int head[N], cnt;
    inline void add(int x, int y, int z) {
        ed[++cnt] = (edge) {head[x], y, z};
        head[x] = cnt;
    }
    ll ans;
    int siz[N], root, mrt = 1e9;
    
    void dfs(int x, int fa) 
    {
        siz[x] = 1;
        int tmp = 0;
        for (reg int i = head[x] ; i ; i = ed[i].nxt)
        {
            int to = ed[i].to;
            if (to == fa) continue;
            dfs(to, x);
            siz[x] += siz[to];
            tmp = max(tmp, siz[to]);
        }
        tmp = max(tmp, n - siz[x]);
        if (tmp < mrt) mrt = tmp, root = x;
    }
    
    void gfs(int x, int fa, ll d) {
        ans += d;
        for (reg int i = head[x] ; i ; i = ed[i].nxt) 
        {
            int to = ed[i].to;
            if (to == fa) continue;
            gfs(to, x, d + ed[i].val);
        }
    }
    
    set <int> all;
    set <int> tr[N];
    set < pair <int, int> > inout;
    #define makp(a, b) make_pair(a, b)
    
    int belong[N], sum[N];
    void ffs(int x, int fa, int bel) {
        belong[x] = bel;
        tr[bel].insert(x);
        siz[x] = 1;
        for (reg int i = head[x] ; i ; i = ed[i].nxt) 
        {
            int to = ed[i].to;
            if (to == fa) continue;
            ffs(to, x, bel);
            siz[x] += siz[to];
        }
    }
    
    inline int Find(int x) 
    {
        set < pair <int, int> > :: iterator it = inout.lower_bound(makp(n - x + 1, 0));
        bool must = 0;
        if (it != inout.end() and (*it).first == n - x + 1 and (*it).second != belong[x])  must = 1;
        if (belong[x]) {
            inout.erase(makp(sum[belong[x]], belong[x]));
            sum[belong[x]]--;
            inout.insert(makp(sum[belong[x]], belong[x]));
        }
        if (must) {
            int k = *tr[(*it).second].begin();
            all.erase(k);
            tr[(*it).second].erase(k);
            if (tr[(*it).second].size()) all.insert(*tr[(*it).second].begin());
            inout.erase(makp(sum[belong[k]], belong[k]));
            inout.insert(makp(--sum[belong[k]], belong[k]));
            return k;        
        } else {
            set <int> :: iterator itt = all.begin();
            if(belong[*itt] == belong[x] and x != root) itt++;
            all.erase(itt);
            int k = *itt;
            if (belong[k]) {
                tr[belong[k]].erase(k);
                if (tr[belong[k]].size()) all.insert(*tr[belong[k]].begin());
                inout.erase(makp(sum[belong[k]], belong[k]));
                inout.insert(makp(--sum[belong[k]], belong[k]));        
            }
            return k;
        }
        return 0;
    }
    
    int main()
    {
        n = read();
        for (reg int i = 1 ; i < n ; i ++) {
            int x = read(), y = read(), z = read();
            add(x, y, z), add(y, x, z);
        }
        
        root = 1;
        dfs(1, 0);
        ans = 0;
        gfs(root, 0, 0);
        printf("%lld
    ", ans * 2);
        all.insert(root);
        
        for (reg int i = head[root] ; i ; i = ed[i].nxt) 
        {
            int to = ed[i].to;
            ffs(to, root, to);
            sum[to] = siz[to] * 2;
            inout.insert(makp(sum[to], to));
            siz[root] += siz[to];
            all.insert(*tr[to].begin());
        }
        
        for (reg int i = 1 ; i <= n ; i ++)
            printf("%d ", Find(i));
        return 0;
    }
    
    
    
     
  • 相关阅读:
    dojo自定义Widget
    奇怪的JS
    Dojo Widget系统(转)
    JS 中Promise 模式
    Structs 原理图
    ArcGIS Engine Style文件操作
    dojo.hitch 原理
    Android:解决cannot find zipalign的问题
    Bootstrap:解决Bootstrap下拉框需要双击才能打开的问题
    Clojure:添加gzip功能
  • 原文地址:https://www.cnblogs.com/BriMon/p/9547292.html
Copyright © 2011-2022 走看看