感觉好久没写这种题了啊。。感觉细节好多。
对每个点极角排序统计钝角和直角, 还有三点共线的。
#pragma GCC optimize(2) #pragma GCC optimize(3) #include<bits/stdc++.h> #define LL long long #define LD long double #define ull unsigned long long #define fi first #define se second #define mk make_pair #define PLL pair<LL, LL> #define PLI pair<LL, int> #define PII pair<int, int> #define SZ(x) ((int)x.size()) #define ALL(x) (x).begin(), (x).end() #define fio ios::sync_with_stdio(false); cin.tie(0) ; using namespace std; const int N = 4000 + 7; const int inf = 0x3f3f3f3f; const LL INF = 0x3f3f3f3f3f3f3f3f; const int mod = (int)1e9 + 7; const double eps = 1e-8; const double PI = acos(-1); template<class T, class S> inline void add(T &a, S b) {a += b; if(a >= mod) a -= mod;} template<class T, class S> inline void sub(T &a, S b) {a -= b; if(a < 0) a += mod;} template<class T, class S> inline bool chkmax(T &a, S b) {return a < b ? a = b, true : false;} template<class T, class S> inline bool chkmin(T &a, S b) {return a > b ? a = b, true : false;} //mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); struct Point { LL x, y; Point(LL x = 0, LL y = 0) : x(x), y(y) {} Point operator + (const Point &rhs) const { return Point(x + rhs.x, y + rhs.y); } Point operator - (const Point &rhs) const { return Point(x - rhs.x, y - rhs.y); } int quan() { return y < 0 || y == 0 && x < 0; } }; LL Det(const Point &A, const Point &B) { return A.x * B.y - B.x * A.y; } LL Dot(const Point &A, const Point &B) { return A.x * B.x + A.y * B.y; } bool operator < (Point A, Point B) { if(A.quan() != B.quan()) return A.quan() < B.quan(); else return Det(A, B) > 0; } bool equ(Point A, Point B) { if(A < B) return false; if(B < A) return false; return true; } LL c2(int x) { return 1LL * x * (x - 1) / 2; } int n; Point a[N], b[N]; bool check(Point A, Point B) { if(Det(A, B) == 0) return false; if(Dot(A, B) <= 0) return false; return true; } int main() { while(scanf("%d", &n) != EOF) { for(int i = 1; i <= n; i++) { scanf("%lld%lld", &a[i].x, &a[i].y); } LL ans = 0, tmp = 0; for(int o = 1; o <= n; o++) { int tot = 0; for(int j = 1; j <= n; j++) { if(j == o) continue; b[tot++] = a[j] - a[o]; } sort(b, b + tot); for(int i = 0; i < tot; i++) { b[i + tot] = b[i]; } int pt1 = 0, pt2 = 0; for(int i = 0, j = 0; i < tot; i = j) { while(j < i + tot && equ(b[i], b[j])) j++; chkmax(pt1, j); while(pt1 < i + tot && Dot(b[i], b[pt1]) > 0 && Det(b[i], b[pt1]) > 0) pt1++; chkmax(pt2, pt1); while(pt2 < i + tot && Det(b[i], b[pt2]) > 0) pt2++; ans += 1LL * (pt2 - pt1) * (j - i); } for(int i = 0, j = 0; i < tot; i = j) { j = i; while(j < i + tot && equ(b[i], b[j])) j++; tmp += c2(j - i); } } ans = 1LL * n * (n - 1) * (n - 2) / 6 - ans - tmp / 2; printf("%lld ", ans); } return 0; } /* */