zoukankan      html  css  js  c++  java
  • POJ 2533 Longest Ordered Subsequence

    LIS:

    维护一个单调的队列
    新的元素,如果大于队尾元素,即插入队尾
    否则二分查找比它大的最小元素,替换掉
    最后队列长度即为LIS的解
     
     
    1 3 7 5 9 4 8
    1
    1 3
    1 3 7
    1 3 5
    1 3 5 9
    1 3 4 9
    1 3 4 8
     
                                                                                 Longest Ordered Subsequence
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 26637   Accepted: 11611

    Description

    A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1a2, ..., aN) be any sequence (ai1ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

    Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

    Input

    The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

    Output

    Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

    Sample Input

    71 7 3 5 9 4 8

    Sample Output

    4

    Source

    Northeastern Europe 2002, Far-Eastern Subregion
     1 #include <iostream>
     2 
     3 using namespace std;
     4 
     5 int a[1111];
     6 int b[1111];
     7 
     8 int BinarySearch(int* a,int l,int r,int x)
     9 {
    10     int L=l,R=r;
    11     while(L<R)
    12     {
    13         int M=(R+L)/2;
    14         if(a[M]<=x) L=M+1;
    15         else  R=M;
    16     }
    17     return R;
    18 }
    19 
    20 int main()
    21 {
    22     int n;
    23     cin>>n;
    24     for(int i=0;i<n;i++)
    25         cin>>a[i];
    26     int cur=0; b[0]=-999999929;
    27 
    28     for(int i=0;i<n;i++)
    29     {
    30         if(a[i]>b[cur])
    31         {
    32             b[++cur]=a[i];
    33         }
    34         else if(a[i]<b[cur])
    35         {
    36             b[BinarySearch(b,1,cur,a[i])]=a[i];
    37         }
    38     }
    39     cout<<cur<<endl;
    40 
    41     return 0;
    42 }
  • 相关阅读:
    kill -3 导出 thread dump
    JVM中锁优化,偏向锁、自旋锁、锁消除、锁膨胀
    Hibernate validator验证
    java子类实例初始化过程
    spring- properties 读取的五种方式
    Spring连接数据库的几种常用的方式
    缓存使用中的注意事项
    java动态代理原理
    classpath目录
    springmvc常用注解标签详解
  • 原文地址:https://www.cnblogs.com/CKboss/p/3086809.html
Copyright © 2011-2022 走看看