zoukankan      html  css  js  c++  java
  • POJ 3464 ACM Computer Factory



    ACM Computer Factory
    Time Limit: 1000MSMemory Limit: 65536K
    Total Submissions: 4829Accepted: 1641Special Judge

    Description

    As you know, all the computers used for ACM contests must be identical, so the participants compete on equal terms. That is why all these computers are historically produced at the same factory.

    Every ACM computer consists of P parts. When all these parts are present, the computer is ready and can be shipped to one of the numerous ACM contests.

    Computer manufacturing is fully automated by using N various machines. Each machine removes some parts from a half-finished computer and adds some new parts (removing of parts is sometimes necessary as the parts cannot be added to a computer in arbitrary order). Each machine is described by its performance (measured in computers per hour), input and output specification.

    Input specification describes which parts must be present in a half-finished computer for the machine to be able to operate on it. The specification is a set of P numbers 0, 1 or 2 (one number for each part), where 0 means that corresponding part must not be present, 1 — the part is required, 2 — presence of the part doesn't matter.

    Output specification describes the result of the operation, and is a set of P numbers 0 or 1, where 0 means that the part is absent, 1 — the part is present.

    The machines are connected by very fast production lines so that delivery time is negligibly small compared to production time.

    After many years of operation the overall performance of the ACM Computer Factory became insufficient for satisfying the growing contest needs. That is why ACM directorate decided to upgrade the factory.

    As different machines were installed in different time periods, they were often not optimally connected to the existing factory machines. It was noted that the easiest way to upgrade the factory is to rearrange production lines. ACM directorate decided to entrust you with solving this problem.

    Input

    Input file contains integers P N, then N descriptions of the machines. The description of ith machine is represented as by 2 P + 1 integers Qi Si,1 Si,2...Si,P Di,1 Di,2...Di,P, where Qi specifies performance, Si,j— input specification for part jDi,k — output specification for part k.

    Constraints

    1 ≤ P ≤ 10, 1 ≤ ≤ 50, 1 ≤ Qi ≤ 10000

    Output

    Output the maximum possible overall performance, then M — number of connections that must be made, then M descriptions of the connections. Each connection between machines A and B must be described by three positive numbers A B W, where W is the number of computers delivered from A to B per hour.

    If several solutions exist, output any of them.

    Sample Input

    Sample input 1
    3 4
    15  0 0 0  0 1 0
    10  0 0 0  0 1 1
    30  0 1 2  1 1 1
    3   0 2 1  1 1 1
    Sample input 2
    3 5
    5   0 0 0  0 1 0
    100 0 1 0  1 0 1
    3   0 1 0  1 1 0
    1   1 0 1  1 1 0
    300 1 1 2  1 1 1
    Sample input 3
    2 2
    100  0 0  1 0
    200  0 1  1 1

    Sample Output

    Sample output 1
    25 2
    1 3 15
    2 3 10
    Sample output 2
    4 5
    1 3 3
    3 5 3
    1 2 1
    2 4 1
    4 5 1
    Sample output 3
    0 0

    Hint

    Bold texts appearing in the sample sections are informative and do not form part of the actual data.

    Source

    Northeastern Europe 2005, Far-Eastern Subregion 

    带有拆点+寻找路径的最大流。。。。。


    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <queue>

    using namespace std;

    const int INF=0x3f3f3f3f;
    const int MaxE=3000,MaxV=300;

    struct Edge
    {
        int to,next,flow,init_flow;
    }E[MaxE];

    bool vis[MaxV];
    int Adj[MaxV],Size,dist[MaxV],src,sink;

    void Init()
    {
        Size=0; memset(Adj,-1,sizeof(Adj));
    }

    void Add_Edge(int u,int v,int w)
    {
        E[Size].to=v;E[Size].next=Adj;E[Size].flow=E[Size].init_flow=w;Adj=Size++;
        E[Size].to=u;E[Size].next=Adj[v];E[Size].flow=E[Size].init_flow=0;Adj[v]=Size++;
    }

    void bfs()
    {
        memset(vis,false,sizeof(vis));
        memset(dist,0,sizeof(dist));
        queue<int> q;
        q.push(src);  vis[src]=true;
        while(!q.empty())
        {
            int u=q.front(); q.pop();
            for(int i=Adj;~i;i=E.next)
            {
                int v=E.to;
                if(E.flow&&!vis[v])
                {
                    q.push(v); vis[v]=true;
                    dist[v]=dist+1;
                }
            }
        }
    }

    int dfs(int u,int delta)
    {
        if(u==sink)
        {
            return delta;
        }
        else
        {
            int ret=0;
            for(int i=Adj;~i&&delta;i=E.next)
            {
                int v=E.to;
                if(E.flow&&dist[v]==dist+1)
                {
                    int dd=dfs(v,min(E.flow,delta));
                    E.flow-=dd; E[i^1].flow+=dd;
                    delta-=dd; ret+=dd;
                }
            }
            return ret;
        }
    }

    int maxflow()
    {
        int ret=0;
        while(true)
        {
            bfs();
            if(!vis[sink]) return ret;
            ret+=dfs(src,INF);
        }
    }

    struct mechine
    {
        int time,in[20],out[20];
    }M[100];

    int main()
    {
        int p,n;
        while(scanf("%d%d",&p,&n)!=EOF)
        {
            Init();

            for(int i=1;i<=n;i++)
            {
                scanf("%d",&M.time);
                for(int j=0;j<p;j++)
                {
                    scanf("%d",&M.in[j]);
                }
                for(int j=0;j<p;j++)
                {
                    scanf("%d",&M.out[j]);
                }
            }
            for(int i=1;i<=n;i++)
            {
                Add_Edge(i,i+n,M.time);
                for(int j=1;j<=n;j++)
                {
                    if(i==j) continue;
                    bool flag=true;
                    for(int k=0;k<p;k++)
                    {
                        if(M.out[k]==M[j].in[k]) continue;
                        else if(M[j].in[k]==2continue;
                        else
                        {
                            flag=false;
                            break;
                        }
                    }
                    if(flag)
                    {
                        Add_Edge(i+n,j,INF);
                    }
                }
                bool flagS=true,flagT=true;
                for(int k=0;k<p;k++)
                {
                    if(M.in[k]==1) flagS=false;
                    if(M.out[k]==0) flagT=false;
                }
                if(flagS) Add_Edge(0,i,INF);
                if(flagT) Add_Edge(i+n,2*n+1,INF);
            }
            src=0; sink=2*n+1;
            int Flow=maxflow();
            int num=0;
            for(int u=n+1;u<=2*n;u++)
            {
                for(int i=Adj;~i;i=E.next)
                {
                    int v=E.to;
                    if(v>0&&v<=n&&E.init_flow-E.flow>0)
                        num++;
                }
            }
            printf("%d %d ",Flow,num);
            for(int u=n+1;u<=2*n;u++)
            {
                for(int i=Adj;~i;i=E.next)
                {
                    int v=E.to;
                    if(v>0&&v<=n&&E.init_flow-E.flow>0)
                        printf("%d %d %d ",u-n,v,E.init_flow-E.flow);
                }
            }

        }
        return 0;
    }
    * This source code was highlighted by YcdoiT. ( style: Codeblocks )
  • 相关阅读:
    CodeSmith注册错误的解决方法
    我是“坚守者”还是"背叛者"?
    拿什么留住你,我的程序员
    去除HTML代码得函数
    页面之间传递参数得几种方法
    nhibernate source code analyzed (abstract classes in nhibernate2.0)
    Web 2.0时代RSS的.Net实现
    Visual Studio.net 2003安装提示重启问题
    开放思路,综合考虑,心胸开阔,做一个合格的项目经理
    了解实际开发中 Hashtable 的特性原理 .NET, JAVA, PHP
  • 原文地址:https://www.cnblogs.com/CKboss/p/3350880.html
Copyright © 2011-2022 走看看