首先是划分为n-2,和2两部分,有3种。划分为n-4和4两部分,不重复的划分有2种。划分为n-6和6两部分,不重复的划分还是有2种。。。
所以递推公式为 F(n)=3*F(n-2)+2×F(n-4)+2*F(n-6)+。。。+2*F(0);
化简:
F(n)=3*F(n-2)+2×F(n-4)+2*F(n-6)+。。。+2*F(0)
与F(n-2)=3*F(n-4)+2×F(n-6)+2*F(n-8)+。。。+2*F(0) 相减得 F(n)=4*F(n-2)-F(n-4)
Total Submission(s): 1486 Accepted Submission(s): 850
所以递推公式为 F(n)=3*F(n-2)+2×F(n-4)+2*F(n-6)+。。。+2*F(0);
化简:
F(n)=3*F(n-2)+2×F(n-4)+2*F(n-6)+。。。+2*F(0)
与F(n-2)=3*F(n-4)+2×F(n-6)+2*F(n-8)+。。。+2*F(0) 相减得 F(n)=4*F(n-2)-F(n-4)
Tri Tiling
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 1486 Accepted Submission(s): 850
Problem Description
In how many ways can you tile a 3xn rectangle with 2x1 dominoes? Here is a sample tiling of a 3x12 rectangle.
![HDOJ 1143 Tri Tiling - qhn999 - 码代码的猿猿 HDOJ 1143 Tri Tiling - qhn999 - 码代码的猿猿](http://img.bimg.126.net/photo/3O_O0TdToHMsxseJ1Qp1Ug==/4001166793958913133.jpg)
![HDOJ 1143 Tri Tiling - qhn999 - 码代码的猿猿 HDOJ 1143 Tri Tiling - qhn999 - 码代码的猿猿](http://img.bimg.126.net/photo/3O_O0TdToHMsxseJ1Qp1Ug==/4001166793958913133.jpg)
Input
Input consists of several test cases followed by a line containing -1. Each test case is a line containing an integer 0 ≤ n ≤ 30.
Output
For each test case, output one integer number giving the number of possible tilings.
Sample Input
2812-1
Sample Output
31532131
Source
Recommend
Eddy
#include <cstdio>
#include <cstring>
using namespace std;
int a[32];
int main()
{
memset(a,0,sizeof(a));
a[0]=1; a[2]=3;
for(int i=4;i<32;i=i+2)
{
a=4*a[i-2]-a[i-4];
}
int n;
while(scanf("%d",&n)&&n!=-1)
{
printf("%d\n",a[n]);
}
return 0;
}