Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 13984 | Accepted: 5526 |
Description
The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 < a < b <= n and gcd(a,b) = 1 arranged in increasing order. The first few are
F2 = {1/2}
F3 = {1/3, 1/2, 2/3}
F4 = {1/4, 1/3, 1/2, 2/3, 3/4}
F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5}
You task is to calculate the number of terms in the Farey sequence Fn.
F2 = {1/2}
F3 = {1/3, 1/2, 2/3}
F4 = {1/4, 1/3, 1/2, 2/3, 3/4}
F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5}
You task is to calculate the number of terms in the Farey sequence Fn.
Input
There are several test cases. Each test case has only one line, which contains a positive integer n (2 <= n <= 106). There are no blank lines between cases. A line with a single 0 terminates the input.
Output
For each test case, you should output one line, which contains N(n) ---- the number of terms in the Farey sequence Fn.
Sample Input
2
3
4
5
0
Sample Output
1
3
5
9
1 #include<iostream> 2 #include<cstdio> 3 #include<cstdlib> 4 #include<cmath> 5 #include<algorithm> 6 #include<cstring> 7 #include<queue> 8 #include<vector> 9 using namespace std; 10 typedef long long LL; 11 const LL maxn=1e6+5; 12 LL N,tot,ANS; 13 LL prime[maxn],phi[maxn]; 14 bool not_p[maxn]; 15 void shai(){ 16 not_p[1]=1; 17 for(LL i=1;i<maxn;i++){ 18 if(not_p[i]==false){ 19 prime[++tot]=i; 20 phi[i]=i-1; 21 } 22 for(LL j=1;j<=tot;j++){ 23 LL k=prime[j]*i; 24 if(k>maxn) break; 25 not_p[k]=true; 26 if(i%prime[j]!=0){ 27 phi[k]=phi[i]*phi[prime[j]]; 28 } 29 else{ 30 phi[k]=phi[i]*prime[j]; 31 break; 32 } 33 } 34 } 35 } 36 int main(){ 37 shai(); 38 while(scanf("%lld",&N)&&N){ 39 ANS=0; 40 for(LL i=2;i<=N;i++){ 41 ANS+=phi[i]; 42 } 43 printf("%lld ",ANS); 44 } 45 return 0; 46 }