最近在搞单点登录的设计,在设计中需要一个Token令牌的加密传输,这个令牌在整个连接单点的各个站中起着连接认证作用,如果被仿造将会有不可预计的损失,但是这个Token是要可逆的。所以像那种md5,sha之类的不可逆加密就没法用了,然后可逆的加密主要是分为对称加密和非对称加密。
- 对称加密:用加密的钥匙来解密,比如DES,AES的加解密。
- 非对称加密:一个钥匙加密,用另一个钥匙解密。
直接看下面的方法:
1、首先生成密钥对
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
|
/// <summary>/// RSA加密的密匙结构 公钥和私匙/// </summary>public struct RSAKey{ public string PublicKey { get; set; } public string PrivateKey { get; set; }}#region 得到RSA密匙对/// <summary>/// 得到RSA密匙对/// </summary>/// <returns></returns>public static RSAKey GetRASKey(){ RSACryptoServiceProvider.UseMachineKeyStore = true; RSACryptoServiceProvider rsaProvider = new RSACryptoServiceProvider(DWKEYSIZE); RSAParameters p = rsaProvider.ExportParameters(true); return new RSAKey() { PublicKey = ComponentKey(p.Exponent, p.Modulus), PrivateKey = ComponentKey(p.D, p.Modulus) };}#endregion#region 将密匙组合成base64字符串/// <summary>/// 将密钥组合成base64编码字符串/// </summary>private static string ComponentKey(byte[] b1, byte[] b2){ List<byte> list = new List<byte>(); list.Add((byte)b1.Length); list.AddRange(b1); list.AddRange(b2); byte[] b = list.ToArray<byte>(); return Convert.ToBase64String(b);}/// <summary>/// 从base64字符串,解析原来的密钥/// </summary>private static void ResolveKey(string key, out byte[] b1, out byte[] b2){ //从base64字符串 解析成原来的字节数组 byte[] b = Convert.FromBase64String(key); //初始化参数的数组长度 b1 = new byte[b[0]]; b2 = new byte[b.Length - b[0] - 1]; //将相应位置是值放进相应的数组 for (int n = 1, i = 0, j = 0; n < b.Length; n++) { if (n <= b[0]) { b1[i++] = b[n]; } else { b2[j++] = b[n]; } }}#endregion |
简要的说明一下上面这段代码,做了3件事:生成RSA密码,把公钥和私钥分别转为密钥字符串,把密钥字符串转为对应的公私钥。
为什么多了一个公私钥和字符串之间的相互转换,太蛋疼的动作,好吧,我懂你。
2、公有的明文加解密算法
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
|
#region 字符串加密解密 公开方法/// <summary>/// 字符串加密/// </summary>/// <param name="source">源字符串 明文</param>/// <param name="key">密匙</param>/// <returns>加密遇到错误将会返回原字符串</returns>public static string EncryptString(string source, string key){ string encryptString = string.Empty; byte[] d; byte[] n; try { if (!CheckSourceValidate(source)) { throw new Exception("source string too long"); } //解析这个密钥 ResolveKey(key, out d, out n); BigInteger biN = new BigInteger(n); BigInteger biD = new BigInteger(d); encryptString = EncryptString(source, biD, biN); } catch { encryptString = source; } return encryptString;}/// <summary>/// 字符串解密/// </summary>/// <param name="encryptString">密文</param>/// <param name="key">密钥</param>/// <returns>遇到解密失败将会返回原字符串</returns>public static string DecryptString(string encryptString, string key){ string source = string.Empty; byte[] e; byte[] n; try { //解析这个密钥 ResolveKey(key, out e, out n); BigInteger biE = new BigInteger(e); BigInteger biN = new BigInteger(n); source = DecryptString(encryptString, biE, biN); } catch { source = encryptString; } return source;}#endregion |
3、私有的加解密算法
#region 字符串加密解密 私有 实现加解密的实现方法
/// <summary>
/// 用指定的密匙加密
/// </summary>
/// <param name="source">明文</param>
/// <param name="d">可以是RSACryptoServiceProvider生成的D</param>
/// <param name="n">可以是RSACryptoServiceProvider生成的Modulus</param>
/// <returns>返回密文</returns>
private static string EncryptString(string source, BigInteger d, BigInteger n)
{
int len = source.Length;
int len1 = 0;
int blockLen = 0;
if ((len % 128) == 0)
len1 = len / 128;
else
len1 = len / 128 + 1;
string block = "";
StringBuilder result = new StringBuilder();
for (int i = 0; i < len1; i++)
{
if (len >= 128)
blockLen = 128;
else
blockLen = len;
block = source.Substring(i * 128, blockLen);
byte[] oText = System.Text.Encoding.Default.GetBytes(block);
BigInteger biText = new BigInteger(oText);
BigInteger biEnText = biText.modPow(d, n);
string temp = biEnText.ToHexString();
result.Append(temp).Append("@");
len -= blockLen;
}
return result.ToString().TrimEnd('@');
}
/// <summary>
/// 用指定的密匙加密
/// </summary>
/// <param name="source">密文</param>
/// <param name="e">可以是RSACryptoServiceProvider生成的Exponent</param>
/// <param name="n">可以是RSACryptoServiceProvider生成的Modulus</param>
/// <returns>返回明文</returns>
private static string DecryptString(string encryptString, BigInteger e, BigInteger n)
{
StringBuilder result = new StringBuilder();
string[] strarr1 = encryptString.Split(new char[] { '@' }, StringSplitOptions.RemoveEmptyEntries);
for (int i = 0; i < strarr1.Length; i++)
{
string block = strarr1[i];
BigInteger biText = new BigInteger(block, 16);
BigInteger biEnText = biText.modPow(e, n);
string temp = System.Text.Encoding.Default.GetString(biEnText.getBytes());
result.Append(temp);
}
return result.ToString();
}
#endregion
4、使用方式
|
1
2
3
4
5
6
7
8
|
string str = "{"sc":"his51","no":"1","na":"管理员"}{"sc":"@his51","no":"1","na":"管理员"}{"sc":"his51","no":"1","na":"管员"}{"sc":"his522";RSAHelper.RSAKey keyPair = RSAHelper.GetRASKey();Console.WriteLine("公钥:" + keyPair.PublicKey + "
");Console.WriteLine("私钥:" + keyPair.PrivateKey + "
");string en = RSAHelper.EncryptString(str, keyPair.PrivateKey);Console.WriteLine("加密后:"+en + "
");Console.WriteLine("解密:"+RSAHelper.DecryptString(en, keyPair.PublicKey) + "
");Console.ReadKey(); |
附件:RSAtest.rar
附:
都说RSA解密效率太低,这里附加一个表:
|
序号 |
原文件大小(KB) |
加密后文件大小(KB) |
加密用时(秒) |
解密用时(秒) |
|
1 |
6 |
6 |
0 |
1 |
|
2 |
12 |
12 |
0 |
3 |
|
3 |
24 |
24 |
0 |
5 |
|
4 |
45 |
45 |
0 |
10 |
|
5 |
90 |
90 |
1 |
21 |
|
6 |
180 |
180 |
2 |
40 |
|
7 |
360 |
360 |
2 |
98 |
|
8 |
720 |
721 |
2 |
165 |
|
9 |
1440 |
1440 |
5 |
325 |
由于Token才几百个字节,效率上没测试过解密效果,但安全和这若干毫秒哪个更重要?答案不言而明。
