zoukankan      html  css  js  c++  java
  • HDU 6025(思维)

    题面:

    Coprime Sequence

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
    Total Submission(s): 1964    Accepted Submission(s): 926


    Problem Description
    Do you know what is called ``Coprime Sequence''? That is a sequence consists of n positive integers, and the GCD (Greatest Common Divisor) of them is equal to 1.
    ``Coprime Sequence'' is easy to find because of its restriction. But we can try to maximize the GCD of these integers by removing exactly one integer. Now given a sequence, please maximize the GCD of its elements.
     

    Input
    The first line of the input contains an integer T(1T10), denoting the number of test cases.
    In each test case, there is an integer n(3n100000) in the first line, denoting the number of integers in the sequence.
    Then the following line consists of n integers a1,a2,...,an(1ai109), denoting the elements in the sequence.
     

    Output
    For each test case, print a single line containing a single integer, denoting the maximum GCD.
     

    Sample Input
    3 3 1 1 1 5 2 2 2 3 2 4 1 2 4 8
     

    Sample Output
    1 2 2
     

    Source
     
        

        题目描述:给你一n个数,让你删除一个数,使得所有数的gcd最大。
        题目分析:这是一道挺有意思的思维题。首先我们要知道,求n个数的gcd与求取的顺序没有影响。而要求出删除一个数之后的最大gcd,我们可以考虑采取某种策略使得某一位取不到。于是,我们可以发现可以采取统计前后缀的gcd,然后通过前后缀的交错求出去除掉某位数之后的gcd,然后统计最大值即可。

        代码如下:
        
    #include <bits/stdc++.h>
    #define maxn 100005
    using namespace std;
    int gcd(int a,int b){
        return b==0?a:gcd(b,a%b);
    }
    int gcda[maxn],gcdb[maxn];
    int a[maxn];
    int main()
    {
        int t;
        cin>>t;
        while(t--){
            int n;
            cin>>n;
            for(int i=1;i<=n;i++){
                cin>>a[i];
            }
            gcda[1]=a[1];
            gcdb[n]=a[n];
            for(int i=2;i<=n;i++){
                gcda[i]=gcd(gcda[i-1],a[i]);
            }
            for(int i=n-1;i>=1;i--){
                gcdb[i]=gcd(gcdb[i+1],a[i]);
            }
            int maxx=0;
            for(int i=1;i<=n;i++){
                if(i==1) maxx=max(maxx,gcdb[i+1]);
                else if(i==n) maxx=max(maxx,gcda[i-1]);
                else maxx=max(maxx,gcd(gcda[i-1],gcdb[i+1]));
            }
            cout<<maxx<<endl;
        }
    }
    

  • 相关阅读:
    [置顶] 宏途_LCD调试流程.
    字典树的数据结构及基本算法的实现
    uva 10714 Ants(贪心)
    paip.输入法编程---增加码表类型
    chomp方法
    ios 限制输入长度
    我所理解的设计模式(C++实现)——策略模式(Strategy Pattern)
    Android用户界面 UI组件--AdapterView及其子类(一) ListView及各种Adapter详解
    C#系列教程——switch定义及使用
    局域网内linux由ip反解析主机名
  • 原文地址:https://www.cnblogs.com/Chen-Jr/p/11007313.html
Copyright © 2011-2022 走看看