题目不难,却想了好长时间,目测自己DP还是很水。。。囧
思路:舍f[i][j]为前i行j列的最大矿总量不难推出状态转移方程为f[i][j]=max(f[i-1][j]+line[i][j],f[i][j-1]+row[j][i])
其中line[i][j]为第i行前j个A矿的和(a[i][1]+a[i][2]+...+a[i][j]),row[i][j]为第i列前j个B矿的和(b[i][1]+b[i][2]+...+b[i][j])
result:
代码如下:
#include <cstdio> inline int max(int x,int y) { return x>y?x:y; } int a[510][510],b[510][510],f[510][510],n,m,line[510][510],row[510][510]; int main() { int i,j; while (scanf("%d%d",&n,&m) && (n || m)) { for (i=1; i<=n; ++i) for (j=1; j<=m; ++j) scanf("%d",&a[i][j]); for (i=1; i<=n; ++i) for (j=1; j<=m; ++j) scanf("%d",&b[i][j]); for (i=1; i<=n; ++i) for (j=1; j<=m; ++j) line[i][j]=line[i][j-1]+a[i][j]; for (i=1; i<=m; ++i) for (j=1; j<=n; ++j) row[i][j]=row[i][j-1]+b[j][i]; for (i=1; i<=n; ++i) for (j=1; j<=m; ++j) f[i][j]=max(f[i-1][j]+line[i][j],f[i][j-1]+row[j][i]); printf("%d\n",f[n][m]); } return 0; }