zoukankan      html  css  js  c++  java
  • 保研机试准备之常用机试代码

    Java快速IO
     
    static StreamTokenizer sc = new StreamTokenizer(new BufferedReader(
                new InputStreamReader(System.in)));
        static PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
            int n = nextInt();
            int m = nextInt();
            out.flush();
            out.close();
        public static int nextInt() throws IOException {
            sc.nextToken();
            return (int) sc.nval;
        }
     
    并查集
     
    /**
     * Union Find Set
     * @author andong
     *
     */
    import java.util.Arrays;
    public class UFS {
        
        final int MAX = 20;
        int[] par;
        int[] rank;
        
        public UFS(){
            
            par = new int[MAX];
            rank = new int[MAX];
            for(int i=0;i<MAX;i++){            
                par[i] = i;
            }
            Arrays.fill(rank, 1);
        }
        
        public int find(int x){
            
            int px = x;
            while(px!=par[px]){
                px = par[px];
            }
            int t;
            while(x!=px){
                t = par[x];
                par[x] = px;
                x = t;
            }
            return px;
        }
        
        public void union(int x,int y){
            
            int px = find(x);
            int py = find(y);
            if(px != py){
                if(rank[px]>=rank[py]){
                    par[py] = px;
                    rank[px]+=rank[py];
                }
                else{
                    par[px] = py;
                    rank[py]+=rank[px];
                }                
            }
        }
        
        public int count(){
            int cnt = 0;
            for(int i=0;i<MAX;i++){
                if(par[i]==i)
                    cnt++;
            }
            return cnt;
        }
    }
    拓扑排序
     
    public class Topo {
        public static void main(String[] args) {
            Scanner sc = new Scanner(System.in);
            int n = sc.nextInt();
            int[][] g = new int[n+1][n+1];
            int m = sc.nextInt();
            for(int i=0;i<m;i++){
                int a = sc.nextInt();
                int b = sc.nextInt();
                g[a][b] = 1;
            }
            int[] cnt = new int[n+1];
            boolean[] in = new boolean[n+1];
            Arrays.fill(in, false);
            Arrays.fill(cnt, 0);
            for(int i=1;i<=n;i++){
                for(int j=1;j<=n;j++){
                    if(g[i][j]==1)
                        cnt[j]++;
                }
            }
            Queue<Integer> q = new LinkedList<Integer>();
            for(int i=1;i<=n;i++){
                if(cnt[i]==0){
                    q.add(i);
                    in[i] = true;
                }
            }
            while(!q.isEmpty()){
                int p = q.remove();
                for(int i=1;i<=n;i++){
                    if(g[p][i]==1){
                        cnt[i]--;
                        if(cnt[i]==0&&!in[i]){
                            q.add(i);
                            in[i] = true;
                        }    
                    }
                }
                System.out.print(p);            
            }
        }
    }
    最小生成树的Kruskal算法
     
    import java.util.ArrayList;
    import java.util.Comparator;
    import java.util.PriorityQueue;
    /**
     * Kruskal算法练习
     * @author andong
     *
     */
    public class Kruskal {
        public static final int INF = Integer.MAX_VALUE;
        public static int nV;
        public static int[][] graph;
        public static UFS ufs;
        public static PriorityQueue<Edge> priq;
        public static ArrayList<Edge> list;
        public static void init(int[][] g){
            nV = g.length;
            graph = g;
            ufs = new UFS(nV);
            Comparator<Edge> com = new Comparator<Kruskal.Edge>() {
                @Override
                public int compare(Edge o1, Edge o2) {
                    return o1.w<o2.w?-1:1;
                }
            };
            priq = new PriorityQueue<Edge>(nV,com);
            list = new ArrayList<Edge>();
            //i->j的图
            for(int i=0;i<nV;i++){
                for(int j=0;j<nV;j++){
                    if(graph[i][j]>0&&graph[i][j]<INF){
                        priq.add(new Edge(i, j,graph[i][j]));
                    }
                }
            }
            work();
        }
        public static void work(){
            int cnt = 0;
            while(!priq.isEmpty()){
                Edge edge = priq.remove();
                if(ufs.find(edge.s)!=ufs.find(edge.e)){
                    ufs.union(edge.s, edge.e);
                    list.add(edge);
                    cnt++;
                }
                if(cnt==nV-1){
                    output();
                    break;
                }
            }
        }
        
        public static void output(){
            for(int i=0;i<list.size();i++){
                System.out.println(list.get(i).w);
            }
        }
        
        static class Edge {
            int s,e,w;
            public Edge(int s,int e,int w){
                this.s = s;
                this.e = e;
                this.w = w;
            }
        }
        
        public static void main(String[] args) {
            int[][] a = {{0,1,2,4},{0,0,2,5},{0,0,0,3},{0,0,0,0}};
            Kruskal.init(a);
            
        }
    }
     
    最短路径的Dijkstra算法
     
    import java.util.ArrayList;
    import java.util.Comparator;
    import java.util.PriorityQueue;
    /**
     * Dijkstra算法练习
     * @author andong
     *
     */
    public class Dijkstra {
        public static int nV;
        public static int src;
        public static int[][] graph;
        public static int[] dist;
        public static ArrayList<Integer> list;
        public static PriorityQueue<point> priq;
        
        public static void init(int[][] g,int s){
            nV = g.length;
            src = s;
            graph = g;
            dist = new int[nV];
            list = new ArrayList<Integer>();
            Comparator<point> com = new Comparator<point>() {
                public int compare(point o1, point o2) {
                    return o1.dist<o2.dist?-1:1;
                }
            };
            priq = new PriorityQueue<point>(nV,com);
            
            for(int i=0;i<nV;i++){
                dist[i] = graph[src][i];
                if(i!=src)    priq.add(new point(i, dist[i]));
            }
            
        }
        
        public static void work(){
            while(!priq.isEmpty()){
                point p = priq.remove();
                for(int i=0;i<nV;i++){
                    int tmp = dist[p.pos]+graph[p.pos][i];
                    if(tmp<dist[i]){
                        dist[i] = tmp;
                        priq.add(new point(i, dist[i]));
                    }
                }
                list.add(p.pos);
            }
            
        }
        
        public static void output(int dest){
            System.out.println(dist[dest]);
            for(int i=0;i<list.size();i++){
                System.out.print(list.get(i));
                if(list.get(i)==dest){
                    System.out.println();
                    break;
                }
            }
        }
        
        static class point{
            int pos,dist;
            public point(int pos,int dist){
                this.pos = pos;
                this.dist = dist;
            }
        }
        
        public static void main(String[] args) {
            int[][] a = {{0,1,2,4},{0,0,2,5},{0,0,0,3},{0,0,0,0}};
            Dijkstra.init(a, 0);
            for(int i=0;i<4;i++){
                Dijkstra.output(i);
            }
        }
    }
     
    最短路径的Floyd算法
     
    import java.util.Arrays;
    /**
     * Floyd算法练习
     * @author andong
     *
     */
    public class Floyd {
        public static int nV;
        public static int[][] dist;
        public static int[][] inter;
        public static void init(int[][] g){
            nV = g.length;
            dist = new int[nV][nV];
            for(int i=0;i<nV;i++)
                for(int j=0;j<nV;j++){
                    if(g[i][j]<Integer.MAX_VALUE)
                        dist[i][j] = g[i][j];
                    else
                        dist[i][j] = -1;
                }
            inter = new int[nV][nV];
            for(int i=0;i<nV;i++){
                for(int j=0;j<nV;j++){
                    inter[i][j] = j;
                }
            }
            work();
        }
        
        public static void work(){
            for(int k=0;k<nV;k++){
                for(int i=0;i<nV;i++){
                    for(int j=0;j<nV;j++){
                        if(dist[i][k]>0&&dist[k][j]>0&&dist[i][j]>dist[i][k]+dist[k][j]){
                            dist[i][j] = dist[i][k]+dist[k][j];
                            inter[i][j] = k;
                        }
                    }
                }
            }
        }
        
        public static void outputDist(int src,int dest){
            System.out.println(dist[src][dest]);
        }
        
        public static void outputPath(int src,int dest){
            if(src==dest){
                System.out.print(src);
                return;
            }
            System.out.print(src);
            outputPath(inter[src][dest], dest);
        }
        
        public static void main(String[] args) {
            int INF = Integer.MAX_VALUE;
            int[][] a = {{0,1,2,4},{INF,0,2,7},{INF,INF,0,3},{INF,INF,INF,0}};
            Floyd.init(a);
            for(int i=0;i<4;i++)
                outputDist(1, i);
            outputPath(1, 3);
        }
    }
    由前序序列和中序序列构建树
     
    1)序列用字符串表示

        

      public static void build(String a,String b){
            int len = a.length();
            if(len==1){
                System.out.println(a);
            }
            else if(len>1){
                char c = a.charAt(0);
                String[] temp = b.split(c+"");
                int len0 = temp[0].length();
                int len1 = temp[1].length();
                build(a.substring(1, 1+len0),temp[0]);
                build(a.substring(len-len1),temp[1]);
                System.out.print(c);
            }
    
        }
     
    2)序列用整数数组表示
        
      public static void build(int pos, int[] pre, int[] in) {
            if (pre.length <= 0)
                return;
            tree[pos] = pre[0];
            int idx = 0;
            for (idx = 0; idx < pre.length; idx++) {
                if (in[idx] == pre[0])
                    break;
            }
            if (idx > 0 && pos * 2 < tree.length) {
                int[] leftpre = new int[idx];
                int[] leftin = new int[idx];
                System.arraycopy(pre, 1, leftpre, 0, idx);
                System.arraycopy(in, 0, leftin, 0, idx);
                build(pos * 2, leftpre, leftin);
            }
            if (idx < pre.length - 1 && pos * 2 + 1 < tree.length - 1) {
                int[] rightpre = new int[pre.length - idx - 1];
                int[] rightin = new int[in.length - idx - 1];
                System.arraycopy(pre, 1 + idx, rightpre, 0, pre.length - 1 - idx);
                System.arraycopy(in, 1 + idx, rightin, 0, in.length - 1 - idx);
                build(pos * 2 + 1, rightpre, rightin);
            }
        }
  • 相关阅读:
    day11课堂小结 函数作用域
    猜年龄函数版day10作业
    函数day10课堂小结
    day07作业
    文件处理day09
    编码day08
    默写
    day07课堂小结
    day06作业
    const与define应用上该怎么取舍
  • 原文地址:https://www.cnblogs.com/CodeCabin/p/3986373.html
Copyright © 2011-2022 走看看