zoukankan      html  css  js  c++  java
  • 洛谷 3676

    说实话这题写树剖 $LCT$ 什么的真的思想又不难又好实现的样子,但是我还是选择自虐选择了动态点分治

    那就两种做法都稍微提一下:

    树链剖分 / $LCT$

    很容易可以发现一个换根操作只会对当前根在原树(根为 $1$ )上的祖先一条链造成影响,也就是将它们的子树变成除当前链方向其它与之相连的点集,那么用树剖跳,用线段树维护一下原树上从上面来的和从下面来的,再将所有涉及的节点合并,并且删去算重复的和不该算的即可(虽然我没实现但是这个思路应该是对的

    动态点分治

    首先有两篇博客:zzq租酥雨

    因为我们要算 $sumlimits_{i = 1}^n s_i^2$ ,可以先想一下 $sumlimits_{i = 1}^n s_i$ 怎么算,因为每个点的贡献只会被祖先计算到,那么易知 $sumlimits_{i = 1}^n s_i = sumlimits_{i = 1}^n value_i * (depth_i + 1)$ ,这个直接用动态点分治维护三个变量 $sumo_i, sumt_i, sumfa_i$ (sumo -> $p$ 子节点权值之和,  $sumt$ -> 子节点权值与距离的乘积到 $p$ 之和,  $sumfa$ -> 子节点权值与距离的乘积到 $fa$ (点分树上)之和)即可得到

    接下来有个很重要的结论(反正我是肯定想不到

      - 不论根如何换, $sumlimits_{i = 1}^n s_i (sum - s_i)$ 一定是一个定值(说实话一开始一直想着如何化简 $sumlimits_{i = 1}^n s_i$ ,所以是真的没有想到可以通过构造定值的方法来解出 $sumlimits_{i = 1}^n s_i^2$ )

    先来意会一下这个结论:就是每一条边连接的两个点在他们的子树中各自选两个点让它们权值相乘,求总权值

    那么就比较容易知道证明了:每条边的边权为所有对应路径经过这条边的两个点的权值和,求总边权,即求的是 $sumlimits_{i = 1}^n sumlimits_{j = 1}^n value_i * value_j * dist (i, j)$ ,所以有 $sumlimits_{i = 1}^n s_i (sum - s_i) = sumlimits_{i = 1}^n sumlimits_{j = 1}^n value_i * value_j * dist (i, j)$

    因为该式是个定值,所以求出 $sumlimits_{i = 1}^n s_i$ 后直接解出 $Ans$ 就完成了查询操作

    对于修改操作,若修改完后与原权值的差值为 $Delta value$ ,那么 $Delta total = Delta value sumlimits_{j = 1}^n value_j * dist (p, j)$ ( $p$ 为修改点)

    代码

      1 #include <iostream>
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <algorithm>
      5 #include <cmath>
      6 
      7 using namespace std;
      8 
      9 typedef long long LL;
     10 
     11 const int MAXN = 2e05 + 10;
     12 const int MAXM = 2e05 + 10;
     13 
     14 const int INF = 0x7fffffff;
     15 
     16 struct LinkedForwardStar {
     17     int to;
     18 
     19     int next;
     20 } ;
     21 
     22 LinkedForwardStar Link[MAXM << 1];
     23 int Head[MAXN]= {0};
     24 int size = 0;
     25 
     26 void Insert (int u, int v) {
     27     Link[++ size].to = v;
     28     Link[size].next = Head[u];
     29 
     30     Head[u] = size;
     31 }
     32 
     33 int N, Q;
     34 int value[MAXN];
     35 
     36 LL Deep[MAXN]= {0};
     37 int Dfn[MAXN]= {0};
     38 int val[MAXN << 1]= {0}, belong[MAXN << 1]= {0};
     39 int dfsord = 0;
     40 LL sum = 0;
     41 LL subtree[MAXN]= {0};
     42 LL s1 = 0;
     43 void DFS (int root, int fa) {
     44     Dfn[root] = ++ dfsord;
     45     val[dfsord] = Deep[root], belong[dfsord] = root;
     46     sum += value[root];
     47     subtree[root] = value[root];
     48     for (int i = Head[root]; i; i = Link[i].next) {
     49         int v = Link[i].to;
     50         if (v == fa)
     51             continue;
     52         Deep[v] = Deep[root] + 1;
     53         DFS (v, root);
     54         val[++ dfsord] = Deep[root], belong[dfsord] = root;
     55         subtree[root] += subtree[v];
     56     }
     57 }
     58 pair<int, int> ST[MAXN << 1][25];
     59 void RMQ () {
     60     for (int i = 1; i <= dfsord; i ++)
     61         ST[i][0] = make_pair (val[i], belong[i]);
     62     for (int j = 1; j <= 20; j ++)
     63         for (int i = 1; i + (1 << j) - 1 <= dfsord; i ++)
     64             ST[i][j] = ST[i][j - 1].first < ST[i + (1 << (j - 1))][j - 1].first ? ST[i][j - 1] : ST[i + (1 << (j - 1))][j - 1];
     65 }
     66 int LCA (int x, int y) {
     67     int L = Dfn[x], R = Dfn[y];
     68     if (L > R)
     69         swap (L, R);
     70     int k = log2 (R - L + 1);
     71     return ST[L][k].first < ST[R - (1 << k) + 1][k].first ? ST[L][k].second : ST[R - (1 << k) + 1][k].second;
     72 }
     73 LL dist (int x, int y) {
     74     int lca = LCA (x, y);
     75     return Deep[x] + Deep[y] - (Deep[lca] << 1);
     76 }
     77 
     78 int father[MAXN]= {0};
     79 bool Vis[MAXN]= {false};
     80 int Size[MAXN]= {0};
     81 int minv = INF, grvy;
     82 int total;
     83 void Grvy_Acqu (int root, int fa) {
     84     Size[root] = 1;
     85     int maxpart = 0;
     86     for (int i = Head[root]; i; i = Link[i].next) {
     87         int v = Link[i].to;
     88         if (v == fa || Vis[v])
     89             continue;
     90         Grvy_Acqu (v, root);
     91         Size[root] += Size[v];
     92         maxpart = max (maxpart, Size[v]);
     93     }
     94     maxpart = max (maxpart, total - Size[root]);
     95     if (maxpart < minv)
     96         minv = maxpart, grvy = root;
     97 }
     98 LL sumo[MAXN]= {0}, sumt[MAXN]= {0}, sumfa[MAXN]= {0};
     99 // sumo -> p子节点权值之和, sumt -> 子节点权值与距离的乘积到p之和, sumfa -> 子节点权值与距离的乘积到fa(点分树上)之和
    100 void sums_Acqu (int root, int fa) {
    101     sumo[grvy] += value[root], sumt[grvy] += value[root] * dist (root, grvy);
    102     if (father[grvy])
    103         sumfa[grvy] += value[root] * dist (root, father[grvy]);
    104     for (int i = Head[root]; i; i =    Link[i].next) {
    105         int v = Link[i].to;
    106         if (v == fa || Vis[v])
    107             continue;
    108         sums_Acqu (v, root);
    109     }
    110 }
    111 void point_DAC (int p, int pre) {
    112     minv = INF, grvy = p, total = Size[p];
    113     Grvy_Acqu (p, 0);
    114     Vis[grvy] = true, father[grvy] = pre;
    115     sums_Acqu (grvy, 0);
    116     int fgrvy = grvy;
    117     for (int i = Head[fgrvy]; i; i = Link[i].next) {
    118         int v = Link[i].to;
    119         if (Vis[v])
    120             continue;
    121         point_DAC (v, fgrvy);
    122     }
    123 }
    124 
    125 LL Query (int op) {
    126     LL tsum = 0;
    127     for (int p = op; p; p = father[p]) {
    128         tsum += sumt[p];
    129         if (p != op)
    130             tsum += sumo[p] * dist (p, op);
    131         if (father[p])
    132             tsum -= sumo[p] * dist (father[p], op) + sumfa[p];
    133     }
    134     return tsum;
    135 }
    136 void Modify (int op, int delta) {
    137     for (int p = op; p; p = father[p]) {
    138         sumo[p] -= value[op] - delta;
    139         sumt[p] -= value[op] * dist (p, op) - delta * dist (p, op);
    140         if (father[p])
    141             sumfa[p] -= value[op] * dist (father[p], op) - delta * dist (father[p], op);
    142     }
    143     sum -= value[op] - delta;
    144     LL s = Query (op);
    145     s1 += (delta - value[op]) * s;
    146     value[op] = delta;
    147 }
    148 
    149 int getnum () {
    150     int num = 0;
    151     char ch = getchar ();
    152     int isneg = 0;
    153 
    154     while (! isdigit (ch)) {
    155         if (ch == '-')
    156             isneg = 1;
    157         ch = getchar ();
    158     }
    159     while (isdigit (ch))
    160         num = (num << 3) + (num << 1) + ch - '0', ch = getchar ();
    161 
    162     return isneg ? - num : num;
    163 }
    164 
    165 int main () {
    166     N = getnum (), Q = getnum ();
    167     for (int i = 1; i < N; i ++) {
    168         int u = getnum (), v = getnum ();
    169         Insert (u, v), Insert (v, u);
    170     }
    171     for (int i = 1; i <= N; i ++)
    172         value[i] = getnum ();
    173     DFS (1, 0), RMQ ();
    174     for (int i = 1; i <= N; i ++)
    175         s1 += subtree[i] * (sum - subtree[i]);
    176     Size[1] = N, point_DAC (1, 0);
    177     /*cout << "Next----------------------" << endl;
    178     for (int i = 1; i <= N; i ++)
    179         cout << sumo[i] << ' ' << sumt[i] << ' ' << sumfa[i] << endl;
    180     cout << "End-----------------------" << endl;*/
    181     for (int Case = 1; Case <= Q; Case ++) {
    182         int opt = getnum ();
    183         if (opt == 1) {
    184             int p = getnum (), delta = getnum ();
    185             Modify (p, delta);
    186         }
    187         else if (opt == 2) {
    188             int p = getnum ();
    189             LL ans = (Query (p) + sum) * sum - s1;
    190             printf ("%lld
    ", ans);
    191         }
    192     }
    193 
    194     return 0;
    195 }
    196 
    197 /*
    198 4 5
    199 1 2
    200 2 3
    201 2 4
    202 4 3 2 1
    203 2 2
    204 1 1 3
    205 2 3
    206 1 2 4
    207 2 4
    208 */
    209 
    210 /*
    211 4 1
    212 1 2
    213 2 3
    214 2 4
    215 4 3 2 1
    216 2 1
    217 */
  • 相关阅读:
    【基础算法】- 全排列
    【基础算法】- 2分查找
    区块链培训
    Static Binding (Early Binding) vs Dynamic Binding (Late Binding)
    test
    No data is deployed on the contract address!
    "throw" is deprecated in favour of "revert()", "require()" and "assert()".
    Variable is declared as a storage pointer. Use an explicit "storage" keyword to silence this warning.
    京都行
    Failed to write genesis block: database already contains an incompatible
  • 原文地址:https://www.cnblogs.com/Colythme/p/10236903.html
Copyright © 2011-2022 走看看