题目大意:
有n((le 15))个作业,每个作业有个name, deadline(截止日期),cost(做作业花的时间),如果没有按时完成某个作业,惩罚分数为超出的时间,求一个合理的顺序使得惩罚分数最小,如果有多个方案分数相同,输出字典序最小的。
题目分析
看到(n le 15)可知状压dp:dp[S]表示完成S状态的最小惩罚分数,转移也较为简单:$$dp[i | (1 << (j - 1))] = min(dp[S | (1 << (j - 1))], dp[i] + getTime(i) + cost[j] - deadline[j])$$。因为要输出方案,于是记录一个from数组表示这个状态是从哪个状态转移来的。又因为要求字典序最小,现将name排序,这样在转移时如果(dp[i | (1 << (j - 1))] == dp[i] + getTime(i) + cost[j] - deadline[j])),并且(i | (1 << (j - 1)) < from[i]),那么(from[i] = i | (1 << (j - 1))),来保证字典序最小。
code
#include<bits/stdc++.h>
using namespace std;
const int N = 20, S = 33000, OO = 0x3f3f3f3f;
int n, dp[S], T, from[S];
vector<int> ans;
struct node{
string name;
int dl, cost;
inline bool operator < (const node &b) const {
return name < b.name;
}
}task[N];
inline int getTime(int s){
int ans = 0;
for (int i=0; (1<<i)<=s; i++)
if ((1<<i)&s)
ans += task[i + 1].cost;
return ans;
}
inline void init(){
memset(dp, OO, sizeof dp), dp[0] = 0;
memset(from, 0, sizeof from);
ans.clear();
}
inline int find(int x){
int l = 1, r = 15;
while (l<=r) {
int mid = (l + r) >> 1;
if (1<<(mid-1) == x) return mid;
else if (1<<(mid-1) > x) r = mid - 1;
else l = mid + 1;
}
return 0;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(NULL), cout.tie(NULL);
cin >> T;
while(T--){
init();
cin >> n;
for (int i=1; i<=n; i++) cin >> task[i].name >> task[i].dl >> task[i].cost;
sort(task + 1, task + n + 1);
for (int i=0; i<(1<<n); i++) {
for(int j=1; j<=n; j++) {
if (i&(1<<(j-1))) continue;
if (dp[i|(1<<(j-1))] > dp[i] + max(0, getTime(i) + task[j].cost - task[j].dl)) {
from[i|(1<<(j-1))] = i;
dp[i|(1<<(j-1))] = dp[i] + max(0, getTime(i) + task[j].cost - task[j].dl);
}
else if(dp[i|(1<<(j-1))] == dp[i] + max(0, getTime(i) + task[j].cost - task[j].dl)) {
if(i < from[i|(1<<(j-1))]) from[i|(1<<(j-1))] = i;
}
}
}
cout << dp[(1<<n)-1] << endl;
int now = (1<<n)-1;
while(now) {
int diff = now ^ (from[now]);
int pos = find(diff);
// cout << now << " " << from[now] << " " << diff << " " << pos << endl;
ans.push_back(pos);
now = from[now];
}
for(int i=ans.size()-1; i>=0; i--) cout << task[ans[i]].name << endl;
}
return 0;
}