题目分析:
设(f[i])表示装前i个玩具的花费。
列出转移方程:$$f[i] = max{f[j] + ((i - (j + 1)) + sum[i] - sum[j] - L))^2}$$
令(x[i] = sum[i] + i), (P = L + 1),上式化为:
[f[i] = max{f[j] + (x[i] - x[j] - P)^2}
]
列式并化为斜率形式:(S(i, j) = frac{(f[i] + x[i]^2 + 2x[i]P) - (f[j] + x[j]^2 + 2x[j]P)}{2(x[i] - x[j])})
然后就是斜率dp了。
code
#include<bits/stdc++.h>
using namespace std;
const int N = 50050;
typedef long long ll;
int n;
ll L, c[N];
typedef long long ll;
ll f[N], x[N], sum[N];
int que[N];
inline ll calc(int i, int j){
return f[j] + (x[i] - x[j] - L) * (x[i] - x[j] - L);
}
inline bool slopeCheck(int i, int j, int k){
return ((f[i] + x[i] * x[i] + 2 * x[i] * L) - (f[j] + x[j] * x[j] + 2 * x[j] * L)) * 2 * (x[j] - x[k]) <=
((f[j] + x[j] * x[j] + 2 * x[j] * L) - (f[k] + x[k] * x[k] + 2 * x[k] * L)) * 2 * (x[i] - x[j]);
}
int main(){
freopen("h.in", "r", stdin);
scanf("%lld%lld", &n, &L);
for(int i = 1; i <= n; i++) scanf("%lld", &c[i]), sum[i] = sum[i - 1] + c[i], x[i] = sum[i] + i;
L += 1;
int head, tail;
que[head = tail = 1] = 0;
for(int i = 1; i <= n; i++){
while(head + 1 <= tail && calc(i, que[head]) >= calc(i, que[head + 1])) head++;
f[i] = calc(i, que[head]);
while(head <= tail - 1 && slopeCheck(i, que[tail], que[tail - 1])) tail--;
que[++tail] = i;
}
printf("%lld", f[n]);
return 0;
}