zoukankan      html  css  js  c++  java
  • keras的用法1

    encoder_input = keras.Input(shape=(28, 28, 1), name="img")
    x = layers.Conv2D(16, 3, activation="relu")(encoder_input)
    x = layers.Conv2D(32, 3, activation="relu")(x)
    x = layers.MaxPooling2D(3)(x)
    x = layers.Conv2D(32, 3, activation="relu")(x)
    x = layers.Conv2D(16, 3, activation="relu")(x)
    encoder_output = layers.GlobalMaxPooling2D()(x)
    
    encoder = keras.Model(encoder_input, encoder_output, name="encoder")
    encoder.summary()
    
    x = layers.Reshape((4, 4, 1))(encoder_output)
    x = layers.Conv2DTranspose(16, 3, activation="relu")(x)
    x = layers.Conv2DTranspose(32, 3, activation="relu")(x)
    x = layers.UpSampling2D(3)(x)
    x = layers.Conv2DTranspose(16, 3, activation="relu")(x)
    decoder_output = layers.Conv2DTranspose(1, 3, activation="relu")(x)
    
    autoencoder = keras.Model(encoder_input, decoder_output, name="autoencoder")
    autoencoder.summary()
    Model: "encoder"
    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    img (InputLayer)             [(None, 28, 28, 1)]       0         
    _________________________________________________________________
    conv2d (Conv2D)              (None, 26, 26, 16)        160       
    _________________________________________________________________
    conv2d_1 (Conv2D)            (None, 24, 24, 32)        4640      
    _________________________________________________________________
    max_pooling2d (MaxPooling2D) (None, 8, 8, 32)          0         
    _________________________________________________________________
    conv2d_2 (Conv2D)            (None, 6, 6, 32)          9248      
    _________________________________________________________________
    conv2d_3 (Conv2D)            (None, 4, 4, 16)          4624      
    _________________________________________________________________
    global_max_pooling2d (Global (None, 16)                0         
    =================================================================
    Total params: 18,672
    Trainable params: 18,672
    Non-trainable params: 0
    _________________________________________________________________
    Model: "autoencoder"
    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    img (InputLayer)             [(None, 28, 28, 1)]       0         
    _________________________________________________________________
    conv2d (Conv2D)              (None, 26, 26, 16)        160       
    _________________________________________________________________
    conv2d_1 (Conv2D)            (None, 24, 24, 32)        4640      
    _________________________________________________________________
    max_pooling2d (MaxPooling2D) (None, 8, 8, 32)          0         
    _________________________________________________________________
    conv2d_2 (Conv2D)            (None, 6, 6, 32)          9248      
    _________________________________________________________________
    conv2d_3 (Conv2D)            (None, 4, 4, 16)          4624      
    _________________________________________________________________
    global_max_pooling2d (Global (None, 16)                0         
    _________________________________________________________________
    reshape (Reshape)            (None, 4, 4, 1)           0         
    _________________________________________________________________
    conv2d_transpose (Conv2DTran (None, 6, 6, 16)          160       
    _________________________________________________________________
    conv2d_transpose_1 (Conv2DTr (None, 8, 8, 32)          4640      
    _________________________________________________________________
    up_sampling2d (UpSampling2D) (None, 24, 24, 32)        0         
    _________________________________________________________________
    conv2d_transpose_2 (Conv2DTr (None, 26, 26, 16)        4624      
    _________________________________________________________________
    conv2d_transpose_3 (Conv2DTr (None, 28, 28, 1)         145       
    =================================================================
    Total params: 28,241
    Trainable params: 28,241
    Non-trainable params: 0
    _________________________________________________________________
  • 相关阅读:
    读《构建之法》阅读与思考
    软工沉浮沉沉沉沉沉沉…记事
    四则运算截图and代码
    2016012000郭慕然+散列函数的应用及其安全性
    结对作业之四则运算网页版
    阅读《构建执法》第四章及第十七章有感
    2016012000小学四则运算练习软件项目报告
    有关读《构建之法》的部分思考与疑问
    遇见·软件
    我的——今日学习内容
  • 原文地址:https://www.cnblogs.com/DDBD/p/13705576.html
Copyright © 2011-2022 走看看