zoukankan      html  css  js  c++  java
  • POJ1410_还是没考虑全面——线段是否与矩形有共同的垂直投影

    题意如题目

    有几个点1.怪我没读好题目:给出的矩形两个端点不一定都是左上右下,但是肯定能勾勒出一个矩形。

    2.现在才发现很多线段相交的判断我都没有仔细考虑这一个问题

    bool ssinsert(Point p1,Point p2,Point p3,Point p4)
    {
    
        if(p1.x == p2.x && p3.x == p4.x && p2.x == p3.x)
        {
            if(max(p1.y,p2.y) < min(p3.y,p4.y) || min(p1.y,p2.y) > max(p3.y,p4.y))return false;
            else return true;
        }
        if(p1.y == p2.y && p3.y == p4.y && p2.y == p3.y)
        {
            if(max(p1.x,p2.x) < min(p3.x,p4.x) || min(p1.x,p2.x) > max(p3.x,p4.x))return false;
            else return true;
        }
        if(cross(p1,p2,p3) * cross(p1,p2,p4) < eps &&
           cross(p3,p4,p1) * cross(p3,p4,p2) < eps)return true;
        return false;
    }
    

     对于很多不需要严格线段相交的题目,也就是有一条线段的端点在另一条线段上,这样结果就是零,但是这样判断的共线是共直线如果两个线段的判定都平行于x轴但没有焦点,就会误判,所以前面我做了预处理

    #include <iostream>
    #include <vector>
    #define eps 1e-10
    using namespace std;
    struct Point
    {
        double x,y;
        Point (double x = 0.0,double y = 0.0):x(x),y(y){}
        Point operator - (Point p){return Point(x - p.x,y - p.y);}
    };
    struct segment
    {
        Point p1,p2;
        segment(Point p1 = Point(0.0,0.0),Point p2 = Point(0.0,0.0)):p1(p1),p2(p2){}
    };
    vector<segment> ls;
    void init()
    {
        ls.clear();
    }
    double cross(Point p0,Point p1,Point p2)
    {
        Point a = p1 - p0;
        Point b = p2 - p0;
        return a.x * b.y - a.y * b.x;
    }
    bool ssinsert(Point p1,Point p2,Point p3,Point p4)
    {
    
        if(p1.x == p2.x && p3.x == p4.x && p2.x == p3.x)
        {
            if(max(p1.y,p2.y) < min(p3.y,p4.y) || min(p1.y,p2.y) > max(p3.y,p4.y))return false;
            else return true;
        }
        if(p1.y == p2.y && p3.y == p4.y && p2.y == p3.y)
        {
            if(max(p1.x,p2.x) < min(p3.x,p4.x) || min(p1.x,p2.x) > max(p3.x,p4.x))return false;
            else return true;
        }
        if(cross(p1,p2,p3) * cross(p1,p2,p4) < eps &&
           cross(p3,p4,p1) * cross(p3,p4,p2) < eps)return true;
        return false;
    }
    bool inner(Point p1,Point p2,Point p3,Point p4)
    {
        if(min(p1.y,p2.y) >= min(p3.y,p4.y) && max(p1.y,p2.y) <= max(p3.y,p4.y) &&
           min(p1.x,p2.x) >= min(p3.x,p4.x) && max(p1.x,p2.x) <= max(p3.x,p4.x))return true;
        return false;
    }
    int main()
    {
        int t;
        double x1,y1,x2,y2;
        scanf("%d",&t);
        while(t--)
        {
            ls.clear();
            scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
            ls.push_back(segment(Point(x1,y1),Point(x2,y2)));
            scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
            double minx = min(x1,x2);
            double maxx = max(x1,x2);
            double miny = min(y1,y2);
            double maxy = max(y1,y2);
            Point a(minx,miny);         Point b(minx,maxy);
            Point c(maxx,maxy);         Point d(maxx,miny);
            //printf("a  %lf %lf
     b %lf %lf
    c %lf %lf
    d %lf %lf
    ",a.x,a.y,b.x,b.y,c.x,c.y,d.x,d.y);
            ls.push_back(segment(a,b));      ls.push_back(segment(b,c));
            ls.push_back(segment(c,d));      ls.push_back(segment(d,a));
            int flag = 0;
            for(int i = 1;i < ls.size();i++)
            {
                if(ssinsert(ls[0].p1,ls[0].p2,ls[i].p1,ls[i].p2) || inner(ls[0].p1,ls[0].p2,b,d))
                {
                    flag = 1;
                    break;
                }
            }
            if(flag)
            {
                printf("T
    ");
            }
            else
            {
                printf("F
    ");
            }
    
        }
        return 0;
    }
    
  • 相关阅读:
    四人过桥求最短时间(《算法设计与分析》习题一的第8题) Apare_xzc
    已知中序后序遍历还原二叉树(uva 548) Apare_xzc
    大二下学期第四周周报(2019.3.24) Apare_xzc
    大二下学期第五周周报(2019.3.31) Apare_xzc
    拓扑排序复习(处女座的比赛资格)
    exgcd复习 Apare_xzc
    ACM课程设计课 Advance_Contest_1 解题报告 Apare_xzc
    使用共享内存
    使用信号量
    使用命名管道
  • 原文地址:https://www.cnblogs.com/DF-yimeng/p/8544482.html
Copyright © 2011-2022 走看看