zoukankan      html  css  js  c++  java
  • CSU1553 Good subsequence —— 二分 + RMQ/线段树

    题目链接: http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1553


    Description

    Give you a sequence of n numbers, and a number k you should find the max length of Good subsequence. Good subsequence is a continuous subsequence of the given sequence and its maximum value - minimum value<=k. For example n=5, k=2, the sequence ={5, 4, 2, 3, 1}. The answer is 3, the good subsequence are {4, 2, 3} or {2, 3, 1}.

     

    Input

    There are several test cases.
    Each test case contains two line. the first line are two numbers indicates n and k (1<=n<=10,000, 1<=k<=1,000,000,000). The second line give the sequence of n numbers a[i] (1<=i<=n, 1<=a[i]<=1,000,000,000). 
    The input will finish with the end of file.

     

    Output

    For each the case, output one integer indicates the answer.

     

    Sample Input

    5 2
    5 4 2 3 1
    1 1
    1

    Sample Output

    3
    1


    题解:

    之前学了RMQ,线段树, 树状数组,但是一直不知道他们在哪里能派上用场。通过这题,终于找到他们的用武之地了:区间查询最大最小值。

    解决了查询区间最大最小值的问题,剩下的就是二分了。这里是二分长度。



    RMQ:

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <cstdlib>
     5 #include <string>
     6 #include <vector>
     7 #include <map>
     8 #include <set>
     9 #include <queue>
    10 #include <sstream>
    11 #include <algorithm>
    12 using namespace std;
    13 #define pb push_back
    14 #define mp make_pair
    15 #define ms(a, b)  memset((a), (b), sizeof(a))
    16 //#define LOCAL
    17 #define eps 0.0000001
    18 #define LNF (1<<60)
    19 typedef long long LL;
    20 const int inf = 0x3f3f3f3f;
    21 const int maxn = 10000+10;
    22 const int mod = 1e9+7;
    23 
    24 LL st_max[maxn][16], st_min[maxn][16];
    25 LL a[maxn];
    26 
    27 void RMQ_init(int n)
    28 {
    29     for(int i = 0; i<n; i++)
    30     {
    31         st_min[i][0] = a[i];
    32         st_max[i][0] = a[i];
    33     }
    34 
    35     for(int j = 1; (1<<j)<=n; j++)//枚举长度
    36     for(int i = 0; i+(1<<j)-1<n; i++)//枚举起点
    37     {
    38         st_min[i][j] = min(st_min[i][j-1],st_min[i+(1<<(j-1))][j-1]);
    39         st_max[i][j] = max(st_max[i][j-1],st_max[i+(1<<(j-1))][j-1]);
    40     }
    41 }
    42 
    43 LL RMQ(int l, int r)//查询
    44 {
    45     int k = 0;
    46     while((1<<(k+1))<=r-l+1)
    47         k++;
    48     return max(st_max[l][k],st_max[r-(1<<k)+1][k]) - min(st_min[l][k],st_min[r-(1<<k)+1][k]);
    49 }
    50 
    51 int test(int len, int n, int k)
    52 {
    53     for(int i = len-1; i<n; i++)
    54         if(RMQ(i-len+1, i)<=1LL*k)
    55             return 1;
    56 
    57     return 0;
    58 }
    59 
    60 int main()
    61 {
    62 #ifdef LOCAL
    63     freopen("input.txt", "r", stdin);
    64 //      freopen("output.txt", "w", stdout);
    65 #endif // LOCAL
    66 
    67     int n, k;
    68     while(~scanf("%d%d", &n, &k))
    69     {
    70         for(int i=0;i<n;i++)
    71             scanf("%lld", &a[i]);
    72 
    73         ms(st_max, 0);
    74         ms(st_min, 0);
    75         RMQ_init(n);
    76 
    77         int l = 1, r = n;
    78         while(l<=r)
    79         {
    80             int mid = (l+r)/2;
    81             if(test(mid, n, k))
    82                 l = mid+1;
    83             else
    84                 r = mid-1;
    85         }
    86         printf("%d
    ", r);
    87     }
    88     return 0;
    89 }
    View Code


    线段树:

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <cstdlib>
     5 #include <string>
     6 #include <vector>
     7 #include <map>
     8 #include <set>
     9 #include <queue>
    10 #include <sstream>
    11 #include <algorithm>
    12 using namespace std;
    13 #define pb push_back
    14 #define mp make_pair
    15 #define ms(a, b)  memset((a), (b), sizeof(a))
    16 //#define LOCAL
    17 #define eps 0.0000001
    18 #define LNF 1000000000000
    19 typedef long long LL;
    20 const int inf = 0x3f3f3f3f;
    21 const int maxn = 10000+10;
    22 const int mod = 1e9+7;
    23 
    24 LL st_max[4*maxn], st_min[4*maxn];
    25 LL a[maxn];
    26 
    27 void build(int rt, int l, int r)
    28 {
    29     if(l==r)
    30     {
    31         st_max[rt] = a[r];
    32         st_min[rt] = a[r];
    33         return;
    34     }
    35 
    36     int mid = (l+r)>>1;
    37     build(rt*2,l,mid);
    38     build(rt*2+1,mid+1,r);
    39     st_max[rt] = max(st_max[rt*2], st_max[rt*2+1]);
    40     st_min[rt] = min(st_min[rt*2], st_min[rt*2+1]);
    41 }
    42 
    43 //由于最大最小值都要查询,而return只能返回一个,所以用ma和mi记录最小值
    44 LL query(int rt, int l, int r, int x, int y, LL &ma, LL &mi)
    45 {
    46     if(x<=l && y>=r)
    47     {
    48         ma = max(ma,st_max[rt]);
    49         mi = min(mi,st_min[rt]);
    50         return ma - mi;
    51     }
    52 
    53     int mid = (l+r)>>1;
    54     if(y<=mid) query(rt*2,l,mid,x,y,ma,mi);
    55     else if(x>=mid+1) query(rt*2+1,mid+1,r,x,y,ma,mi);
    56     else query(rt*2,l,mid,x,mid,ma,mi),query(rt*2+1,mid+1,r,mid+1,y,ma,mi);
    57 
    58     return ma - mi;
    59 }
    60 
    61 int test(int len, int n, int k)
    62 {
    63     for(int i = len-1; i<n; i++)
    64     {
    65         LL ma = -LNF, mi = LNF;
    66         if(query(1,0,n-1, i-len+1, i, ma,mi)<=1LL*k)
    67             return 1;
    68     }
    69     return 0;
    70 }
    71 
    72 int main()
    73 {
    74 #ifdef LOCAL
    75     freopen("input.txt", "r", stdin);
    76 //      freopen("output.txt", "w", stdout);
    77 #endif // LOCAL
    78 
    79     int n, k;
    80     while(scanf("%d%d", &n, &k)!=EOF)
    81     {
    82         for(int i=0;i<n;i++)
    83             scanf("%lld", &a[i]);
    84 
    85         build(1,0,n-1);
    86 
    87         int l = 1, r = n;
    88         while(l<=r)
    89         {
    90             int mid = (l+r)/2;
    91             if(test(mid, n,k))
    92                 l = mid+1;
    93             else
    94                 r = mid-1;
    95         }
    96         printf("%d
    ", r);
    97     }
    98     return 0;
    99 }
    View Code
  • 相关阅读:
    .Net Core主机配置
    .NET Core 初识
    控制反转IOC,依赖注入DI理解
    依赖倒置原则解析,理解面向抽象编程
    工厂模式
    IOC 概念
    利用Comparator排序
    使用Integer类实现二叉树排序
    先按成绩由高到低,相等则按年龄由低到高
    对象销毁之前进行某些操作
  • 原文地址:https://www.cnblogs.com/DOLFAMINGO/p/7538720.html
Copyright © 2011-2022 走看看