zoukankan      html  css  js  c++  java
  • 吴恩达深度学习笔记(二)—— 深层神经网络的训练过程

    主要内容:

    一.初始化参数

    二.前向传播

    三.计算代价函数

    四.反向传播

    五.更新参数(梯度下降)

    一.初始化参数

    1.由于将参数W初始化为0会导致神经网络失效,因而需要对W进行随机初始化。一般的做法是用np.random.np()生成一个高斯分布的数,然后再乘上一个很小的数比如0.01,以限制它的范围。所以可知W的初始值是一个很小的数(绝对值小),那为什么不能取绝对值较大的数呢?根据sigmoid或者tanh函数的图像可知,当z = wx + b 很大或很小时,曲线的斜率很小,这就会导致梯度下降的速度非常慢,不利于快速达到局部最优值。而当w绝对值很大时,z绝对值也会很大,所以w的绝对值值应该尽量小,以保证在初期有较快的梯度下降速度。

    2.由于参数b的初始化对神经网络没有较大的影响,因此可以直接设置为0。

    3.对于神经网络而言,由于每一层的结点数都可能不一样,这样也就导致了每一层结点上的参数W的形状不一样,这里也是非容易出错,因而需要理每一层网络的参数的形状。假设输入层X有12288个特征,有209个样本,那么这个深度神经网络的参数具体如下(n[l]表示第l层的结点数):

    4.代码如下:

    #layer_dims为每一层的结点数,包括输入层
    def initialize_parameters_deep(layer_dims):
        """
        Arguments:
        layer_dims -- python array (list) containing the dimensions of each layer in our network
        
        Returns:
        parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":
                        Wl -- weight matrix of shape (layer_dims[l], layer_dims[l-1])
                        bl -- bias vector of shape (layer_dims[l], 1)
        """
        
        np.random.seed(3)
        parameters = {}         #用字典存储参数W和b
        L = len(layer_dims) - 1           # 神经网络的层数,不考虑输入层
    
        #初始化第1到第L层结点的参数,其中第0层为输入层X
        for l in range(1, L+1):
            ### START CODE HERE ### (≈ 2 lines of code)
            parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1]) * 0.01
            parameters['b' + str(l)] = np.zeros((layer_dims[l],1))
            ### END CODE HERE ###
            
            assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l-1]))
            assert(parameters['b' + str(l)].shape == (layer_dims[l], 1))
    
            
        return parameters
    View Code

    二.前向传播

    1.前向传播相对简单,对于每一层可分为两个步骤

    1)首先计算出线性值:Z[l] = W[l]A[l-1] + b[l]

    2)然后将Z[l]带入到激活函数中,作为这一层的输出:A[l] = g(Z[l])

    2.在执行这两个步骤时,需要将Z[l]、A[l-1]、W[l]、b[l]存起来,以待反向传播之用。实际上b[l]不是必须的,只不过b[l]可以用来检测db[l]的形状是否正确。

    3.对于第1~L-1层,一般使用relu()函数作为激活函数,而对于第L层,一般使用sigmoid()函数,因而sigmoid()函数的输出值是[0,1],可以作为概率。

    1)线性计算:

    # GRADED FUNCTION: linear_forward
    def linear_forward(A, W, b):
        """
        Implement the linear part of a layer's forward propagation.
    
        Arguments:
        A -- activations from previous layer (or input data): (size of previous layer, number of examples)
        W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)
        b -- bias vector, numpy array of shape (size of the current layer, 1)
    
        Returns:
        Z -- the input of the activation function, also called pre-activation parameter 
        cache -- a python dictionary containing "A", "W" and "b" ; stored for computing the backward pass efficiently
        """
        
        ### START CODE HERE ### (≈ 1 line of code)
        Z = np.dot(W,A) + b
        ### END CODE HERE ###
        
        assert(Z.shape == (W.shape[0], A.shape[1]))
        cache = (A, W, b)
        
        return Z, cache
    View Code

    2)单层计算:

    # GRADED FUNCTION: linear_activation_forward
    def linear_activation_forward(A_prev, W, b, activation):
        """
        Implement the forward propagation for the LINEAR->ACTIVATION layer
    
        Arguments:
        A_prev -- activations from previous layer (or input data): (size of previous layer, number of examples)
        W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)
        b -- bias vector, numpy array of shape (size of the current layer, 1)
        activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"
    
        Returns:
        A -- the output of the activation function, also called the post-activation value 
        cache -- a python dictionary containing "linear_cache" and "activation_cache";
                 stored for computing the backward pass efficiently
        """
        
        if activation == "sigmoid":
            # Inputs: "A_prev, W, b". Outputs: "A, activation_cache".
            ### START CODE HERE ### (≈ 2 lines of code)
            Z, linear_cache = linear_forward(A_prev,W,b)
            A, activation_cache = sigmoid(Z)
            ### END CODE HERE ###
        
        elif activation == "relu":
            # Inputs: "A_prev, W, b". Outputs: "A, activation_cache".
            ### START CODE HERE ### (≈ 2 lines of code)
            Z, linear_cache = linear_forward(A_prev,W,b)
            A, activation_cache = relu(Z)
            ### END CODE HERE ###
        
        assert (A.shape == (W.shape[0], A_prev.shape[1]))
        cache = (linear_cache, activation_cache)
    
        return A, cache
    View Code

    3)for循环执行前向传播:

    # GRADED FUNCTION: L_model_forward
    def L_model_forward(X, parameters):
        """
        Implement forward propagation for the [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID computation
        
        Arguments:
        X -- data, numpy array of shape (input size, number of examples)
        parameters -- output of initialize_parameters_deep()
        
        Returns:
        AL -- last post-activation value
        caches -- list of caches containing:
                    every cache of linear_relu_forward() (there are L-1 of them, indexed from 0 to L-2)
                    the cache of linear_sigmoid_forward() (there is one, indexed L-1)
        """
    
        caches = []
        A = X
        L = len(parameters) // 2                  # number of layers in the neural network,W和b是成对出现的,所以层数是参数的个数/2
        
        # Implement [LINEAR -> RELU]*(L-1). Add "cache" to the "caches" list.
        for l in range(1, L):   
            ### START CODE HERE ### (≈ 2 lines of code)
            A, cache = linear_activation_forward(A_prev=A,W=parameters["W"+str(l)],b=parameters["b"+str(l)],activation="relu")
            caches.append(cache)
            ### END CODE HERE ###
        
        # Implement LINEAR -> SIGMOID. Add "cache" to the "caches" list.
        ### START CODE HERE ### (≈ 2 lines of code)
        AL, cache = linear_activation_forward(A_prev=A,W=parameters["W"+str(L)],b=parameters["b"+str(L)],activation="sigmoid")
        caches.append(cache)
        ### END CODE HERE ###
        
        assert(AL.shape == (1,X.shape[1]))  
        return AL, caches
    View Code

    三.计算代价函数

     由于第L层使用的是sigmoid()函数,所以最终的代价函数为:

    代码如下:

    # GRADED FUNCTION: compute_cost
    
    def compute_cost(AL, Y):
        """
        Implement the cost function defined by equation (7).
    
        Arguments:
        AL -- probability vector corresponding to your label predictions, shape (1, number of examples)
        Y -- true "label" vector (for example: containing 0 if non-cat, 1 if cat), shape (1, number of examples)
    
        Returns:
        cost -- cross-entropy cost
        """
        
        m = Y.shape[1]
    
        # Compute loss from aL and y.
        ### START CODE HERE ### (≈ 1 lines of code)
        cost = -1/m*np.sum(Y*np.log(AL)+(1-Y)*np.log(1-AL))
        ### END CODE HERE ###
        
        cost = np.squeeze(cost)      # To make sure your cost's shape is what we expect (e.g. this turns [[17]] into 17).
        assert(cost.shape == ())
        
        return cost

    四.反向传播

    1.反向传播最主要的作用就是计算出dW、db这两类倒数,用于梯度下降。

    2.反向传播的起始是计算出dAL,根据代价函数,对AL进行求导,可得:

    3.之后的过程就是:对于第l层,输入dA[l] 和 cache(存储A[l-1]、Z[l]、W[l]、b[l],其中b[l]非必须),输出dA[l-1]、dW[l]、db[l]

    代码如下:

    # GRADED FUNCTION: linear_activation_backward
    
    def linear_activation_backward(dA, cache, activation):
        """
        Implement the backward propagation for the LINEAR->ACTIVATION layer.
        
        Arguments:
        dA -- post-activation gradient for current layer l 
        cache -- tuple of values (linear_cache, activation_cache) we store for computing backward propagation efficiently
        activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"
        
        Returns:
        dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev
        dW -- Gradient of the cost with respect to W (current layer l), same shape as W
        db -- Gradient of the cost with respect to b (current layer l), same shape as b
        """
        linear_cache, activation_cache = cache
        
        if activation == "relu":
            ### START CODE HERE ### (≈ 2 lines of code)
            dZ =  relu_backward(dA, activation_cache)  #dA乘上dA对Z的导数,得到dZ。需要根据不同的激活函数而定,因而在这里封装起来
            dA_prev, dW, db = linear_backward(dZ=dZ,cache=linear_cache)
            ### END CODE HERE ###
            
        elif activation == "sigmoid":
            ### START CODE HERE ### (≈ 2 lines of code)
            dZ = sigmoid_backward(dA, activation_cache)
            dA_prev, dW, db = linear_backward(dZ=dZ,cache=linear_cache)
            ### END CODE HERE ###
        
        return dA_prev, dW, db
    View Code

    4.整个过程如下:

    代码如下:

    # GRADED FUNCTION: L_model_backward
    
    def L_model_backward(AL, Y, caches):
        """
        Implement the backward propagation for the [LINEAR->RELU] * (L-1) -> LINEAR -> SIGMOID group
        
        Arguments:
        AL -- probability vector, output of the forward propagation (L_model_forward())
        Y -- true "label" vector (containing 0 if non-cat, 1 if cat)
        caches -- list of caches containing:
                    every cache of linear_activation_forward() with "relu" (it's caches[l], for l in range(L-1) i.e l = 0...L-2)
                    the cache of linear_activation_forward() with "sigmoid" (it's caches[L-1])
        
        Returns:
        grads -- A dictionary with the gradients
                 grads["dA" + str(l)] = ...
                 grads["dW" + str(l)] = ...
                 grads["db" + str(l)] = ...
        """
        grads = {}
        L = len(caches) # the number of layers
        m = AL.shape[1]
        Y = Y.reshape(AL.shape) # after this line, Y is the same shape as AL
    
        # Initializing the backpropagation
        ### START CODE HERE ### (1 line of code)
        dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))
        ### END CODE HERE ###
        
        # Lth layer (SIGMOID -> LINEAR) gradients. Inputs: "DAL, Y, caches". Outputs: "grads["dAL-1"], grads["dWL"], grads["dbL"]
        ### START CODE HERE ### (approx. 2 lines)
        #计算第L层,分开计算是因为激活函数不同
        current_cache = caches[L-1]   #注意caches的下标从0开始,而网络层从1开始,所以第L层的缓存对应caches[L-1]
        grads["dA" + str(L-1)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL, current_cache, activation = 'sigmoid')
        ### END CODE HERE ###
    
        #从第L-1层计算到第一层:
        for l in reversed(range(1,L)):
            # Inputs: "grads["dA" + str(l)], caches". Outputs: "grads["dA" + str(l - 1)] , grads["dW" + str(l)] , grads["db" + str(l)] 
            ### START CODE HERE ### (approx. 5 lines)
            current_cache = caches[l-1]   #注意caches的下标从0开始,而网络层从1开始,所以第L层的缓存对应caches[l-1]
            dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA"+str(l)],current_cache,"relu")
            grads["dA" + str(l-1)] = dA_prev_temp
            grads["dW" + str(l)] = dW_temp
            grads["db" + str(l)] = db_temp
            ### END CODE HERE ###
    
        return grads
    View Code

    五.更新参数(梯度下降)

    通过反向传播求出dW、db之后,剩下的工作就相对轻松了,直接进行梯度下降,更新参数:

    代码如下(没有进行正则化):

    # GRADED FUNCTION: update_parameters
    
    def update_parameters(parameters, grads, learning_rate):
        """
        Update parameters using gradient descent
        
        Arguments:
        parameters -- python dictionary containing your parameters 
        grads -- python dictionary containing your gradients, output of L_model_backward
        
        Returns:
        parameters -- python dictionary containing your updated parameters 
                      parameters["W" + str(l)] = ... 
                      parameters["b" + str(l)] = ...
        """
        
        L = len(parameters) // 2 # number of layers in the neural network
    
        # Update rule for each parameter. Use a for loop.
        ### START CODE HERE ### (≈ 3 lines of code)
        for l in range(L):
            parameters["W" + str(l+1)] = parameters["W" + str(l+1)] - learning_rate*grads["dW" + str(l+1)]
            parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - learning_rate*grads["db" + str(l+1)]
        ### END CODE HERE ###
            
        return parameters
  • 相关阅读:
    NYOJ题目28大数阶乘
    网页小图标设置
    Sass中文乱码问题(手动编译和watch编译)
    设计模式之构建者模式(Builder):初步理解
    Struts2之类型转换器
    css设置网页文本选中样式
    由超市临时储物柜引发的一点设计随想...
    前端资源相关参考资料
    Struts2拦截器之ExceptionMappingInterceptor(异常映射拦截器)
    Struts2之OGNL
  • 原文地址:https://www.cnblogs.com/DOLFAMINGO/p/9736354.html
Copyright © 2011-2022 走看看