zoukankan      html  css  js  c++  java
  • bitmap和布隆过滤器

    bitmap和布隆过滤器

    海量整数中是否存在某个值--bitmap

    ​ 在一个程序中,经常有让我们判断一个集合中是否存在某个数的case;大多数情况下,只需要用map或是list这样简单的数据结构,如果使用的是高级语言,还能乘上快车调用几个封装好的api,加几个if else,两三行代码就可以在控制台看自己“完美”而又“健壮”的代码跑起来了。

    ​ 但是,事无完美,在高并发环境下,所有的case都会极端化,如果这是一个十分庞大的集合(给这个庞大一个具体的值吧,一个亿),简单的一个hash map,不考虑链表所需的指针内存空间,一亿个int类型的整数,就需要380多M(4byte × 10 ^8),十亿的话就是4个G,不考虑性能,光算算这内存开销,即使现在满地都是128G的服务器,也不好吃下这一壶。

    bitmap则使用位数代表数的大小,bit中存储的0或者1来标识该整数是否存在,具体模型如下:

    0

    img这是一个能标识0-9的“bitmap”,其中4321这四个数存在

    ​ 计算一下bitmap的内存开销,如果是1亿以内的数据查找,我们只需要1亿个bit = 12MB左右的内存空间,就可以完成海量数据查找了,是不是极其诱人的一个内存缩减,以下为Java实现的bitmap代码:

    public class MyBitMap {
     
        private byte[] bytes;
        private int initSize;
     
        public MyBitMap(int size) {
            if (size <= 0) {
                return;
            }
            initSize = size / (8) + 1;
            bytes = new byte[initSize];
        }
     
        public void set(int number) {
            //相当于对一个数字进行右移动3位,相当于除以8
            int index = number >> 3;
            //相当于 number % 8 获取到byte[index]的位置
            int position = number & 0x07;
            //进行|或运算  参加运算的两个对象只要有一个为1,其值为1。
            bytes[index] |= 1 << position;
        }
     
     
        public boolean contain(int number) {
            int index = number >> 3;
            int position = number & 0x07;
            return (bytes[index] & (1 << position)) != 0;
        }
     
        public static void main(String[] args) {
            MyBitMap myBitMap = new MyBitMap(32);
            myBitMap.set(30);
            myBitMap.set(13);
            myBitMap.set(24);
            System.out.println(myBitMap.contain(2));
        }
     
    }
    

    ​ 使用简单的byte数组和位运算,就能做到时间与空间的完美均衡,是不是美美哒,wrong!试想一下,如果我们明确这是一个一亿以内,但是数量级只有10的集合,我们使用bitmap,同样需要开销12M的数据,如果是10亿以内的数据,开销就会涨到120M,bitmap的空间开销永远是和他的数据取值范围挂钩的,只有在海量数据下,他才能够大显身手。

    ​ 再说说刚刚提到的那个极端case,假设这个数据量在一千万,但是取值范围好死不死就在十个亿以内,那我们不可避免还是要面对120M的开销,有方法应对么?

    布隆过滤器

    ​ 如果面对笔者说的以上问题,我们结合一下常规的解决方案,譬如说hash一下,我将十亿以内的某个数据,hash成一亿内的某个值,再去bitmap中查怎么样,如下图,布隆过滤器就是这么干的:

    1

    利用多个hash算法得到的值,减小hash碰撞的概率

    ​ 像上面的图注所说,我们可以利用多个hash算法减小碰撞概率,但只要存在碰撞,就一定会有错误判断,我们无法百分百确定一个值是否真的存在,但是hash算法的魅力在于,我不能确定你是否存在,但是我可以确定你是否真的不存在,这也就是以上的实现为什么称之“过滤器”的原因了。

    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文链接,如有问题, 可评论咨询.
  • 相关阅读:
    【转】PostgreSQL中表名、字段名大小写问题
    【转】 PostgreSQL数据类型
    ASP.NET MVC 使用 Petapoco 微型ORM框架+NpgSql驱动连接 PostgreSQL数据库(问题总结)
    mvc项目中实现备份数据库(sqlserver2012)
    定时器的使用
    ASP.NET MVC向前台输出javascript问题
    无法从命令行或调试器启动服务,必须首先安装Windows服务(使用installutil.exe),然后用ServerExplorer、Windows服务器管理工具或NET START命令启动它
    标签控制器  UITabBarController
    UITableView动态存放、重用机制
    UITableView表格视图、UITableView代理方法及应用
  • 原文地址:https://www.cnblogs.com/Dean0731/p/14655051.html
Copyright © 2011-2022 走看看