zoukankan      html  css  js  c++  java
  • poj 2262 Goldbach's Conjecture

    Goldbach's Conjecture
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 39353   Accepted: 15077

    Description

    In 1742, Christian Goldbach, a German amateur mathematician, sent a letter to Leonhard Euler in which he made the following conjecture: 
    Every even number greater than 4 can be 
    written as the sum of two odd prime numbers.

    For example: 
    8 = 3 + 5. Both 3 and 5 are odd prime numbers. 
    20 = 3 + 17 = 7 + 13. 
    42 = 5 + 37 = 11 + 31 = 13 + 29 = 19 + 23.

    Today it is still unproven whether the conjecture is right. (Oh wait, I have the proof of course, but it is too long to write it on the margin of this page.) 
    Anyway, your task is now to verify Goldbach's conjecture for all even numbers less than a million. 

    Input

    The input will contain one or more test cases. 
    Each test case consists of one even integer n with 6 <= n < 1000000. 
    Input will be terminated by a value of 0 for n.

    Output

    For each test case, print one line of the form n = a + b, where a and b are odd primes. Numbers and operators should be separated by exactly one blank like in the sample output below. If there is more than one pair of odd primes adding up to n, choose the pair where the difference b - a is maximized. If there is no such pair, print a line saying "Goldbach's conjecture is wrong."

    Sample Input

    8
    20
    42
    0
    

    Sample Output

    8 = 3 + 5
    20 = 3 + 17
    42 = 5 + 37
    

    Source

     1 #include<cstdio>
     2 #include<algorithm>
     3 #include<iostream>
     4 #include<string>
     5 #include<cstring>
     6 #include<vector>
     7 using namespace std;
     8 #define max 1000000
     9 int prime[max+5];
    10 bool vis[max+5];
    11 void get_prime(int n){
    12     memset(vis,false,sizeof(vis));
    13     vis[0]=vis[1]=true;
    14     int i=2,index=0;
    15     for(;i<=n;i++){
    16         if(!vis[i]){
    17             prime[index++]=i;
    18             //vis[i]=false;
    19         }
    20         int j=0;
    21         for(;j<index&&prime[j]*i<=n;j++){//????
    22             vis[prime[j]*i]=true;
    23             if(!(i%prime[j]))
    24             break;
    25         }
    26     }
    27 }
    28 int main(){
    29     int n;
    30     get_prime(max);
    31     while(cin>>n&&n){
    32         int i=3,half=n/2;
    33         for(;i<=half;i+=2){//等号一定要取到,存在数等于两个相同质数之和的
    34             if(!vis[i]&&!vis[n-i]){
    35                 break;
    36             }
    37         }
    38         if(i>half)
    39         cout<<"Goldbach's conjecture is wrong."<<endl;
    40         else
    41         cout<<n<<" = "<<i<<" + "<<n-i<<endl;
    42     }
    43     return 0;
    44 }
  • 相关阅读:
    module5-01-jQuery 基础
    module4-JavaScript 高级特性、ES6 新特性
    module4-05-ES6新特性
    module4-04-正则表达式
    module4-03-继承和函数进阶
    module4-02-面向对象编程案例 随机方块、贪吃蛇
    module4-01-面向对象编程、原型链、构造函数、原型对象
    module3-Web APIs 网页应用编程
    module3-05-定时器的应用-简单动画-无缝滚动-轮播图
    人生赢家从规划开始,先觉知、量己力、衡外情、重实践、善反省
  • 原文地址:https://www.cnblogs.com/Deribs4/p/4297668.html
Copyright © 2011-2022 走看看