zoukankan      html  css  js  c++  java
  • poj 2262 Goldbach's Conjecture

    Goldbach's Conjecture
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 39353   Accepted: 15077

    Description

    In 1742, Christian Goldbach, a German amateur mathematician, sent a letter to Leonhard Euler in which he made the following conjecture: 
    Every even number greater than 4 can be 
    written as the sum of two odd prime numbers.

    For example: 
    8 = 3 + 5. Both 3 and 5 are odd prime numbers. 
    20 = 3 + 17 = 7 + 13. 
    42 = 5 + 37 = 11 + 31 = 13 + 29 = 19 + 23.

    Today it is still unproven whether the conjecture is right. (Oh wait, I have the proof of course, but it is too long to write it on the margin of this page.) 
    Anyway, your task is now to verify Goldbach's conjecture for all even numbers less than a million. 

    Input

    The input will contain one or more test cases. 
    Each test case consists of one even integer n with 6 <= n < 1000000. 
    Input will be terminated by a value of 0 for n.

    Output

    For each test case, print one line of the form n = a + b, where a and b are odd primes. Numbers and operators should be separated by exactly one blank like in the sample output below. If there is more than one pair of odd primes adding up to n, choose the pair where the difference b - a is maximized. If there is no such pair, print a line saying "Goldbach's conjecture is wrong."

    Sample Input

    8
    20
    42
    0
    

    Sample Output

    8 = 3 + 5
    20 = 3 + 17
    42 = 5 + 37
    

    Source

     1 #include<cstdio>
     2 #include<algorithm>
     3 #include<iostream>
     4 #include<string>
     5 #include<cstring>
     6 #include<vector>
     7 using namespace std;
     8 #define max 1000000
     9 int prime[max+5];
    10 bool vis[max+5];
    11 void get_prime(int n){
    12     memset(vis,false,sizeof(vis));
    13     vis[0]=vis[1]=true;
    14     int i=2,index=0;
    15     for(;i<=n;i++){
    16         if(!vis[i]){
    17             prime[index++]=i;
    18             //vis[i]=false;
    19         }
    20         int j=0;
    21         for(;j<index&&prime[j]*i<=n;j++){//????
    22             vis[prime[j]*i]=true;
    23             if(!(i%prime[j]))
    24             break;
    25         }
    26     }
    27 }
    28 int main(){
    29     int n;
    30     get_prime(max);
    31     while(cin>>n&&n){
    32         int i=3,half=n/2;
    33         for(;i<=half;i+=2){//等号一定要取到,存在数等于两个相同质数之和的
    34             if(!vis[i]&&!vis[n-i]){
    35                 break;
    36             }
    37         }
    38         if(i>half)
    39         cout<<"Goldbach's conjecture is wrong."<<endl;
    40         else
    41         cout<<n<<" = "<<i<<" + "<<n-i<<endl;
    42     }
    43     return 0;
    44 }
  • 相关阅读:
    Oracle备份恢复之无备份情况下恢复undo表空间
    Oracle HA 之 测试RAC的功能
    (转)Python——functools
    (转)Python标准库:内置函数print(*objects, sep=' ', end=' ', file=sys.stdout, flush=False)
    (转)用Python写堡垒机项目
    (转)Python进阶:函数式编程(高阶函数,map,reduce,filter,sorted,返回函数,匿名函数,偏函数)
    (转)Linux中的位图
    (转)Python标准库02 时间与日期 (time, datetime包)
    (转)Python 3 collections.defaultdict() 与 dict的使用和区别
    (转)python高级:列表解析和生成表达式
  • 原文地址:https://www.cnblogs.com/Deribs4/p/4297668.html
Copyright © 2011-2022 走看看