zoukankan      html  css  js  c++  java
  • poj 2262 Goldbach's Conjecture

    Goldbach's Conjecture
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 39353   Accepted: 15077

    Description

    In 1742, Christian Goldbach, a German amateur mathematician, sent a letter to Leonhard Euler in which he made the following conjecture: 
    Every even number greater than 4 can be 
    written as the sum of two odd prime numbers.

    For example: 
    8 = 3 + 5. Both 3 and 5 are odd prime numbers. 
    20 = 3 + 17 = 7 + 13. 
    42 = 5 + 37 = 11 + 31 = 13 + 29 = 19 + 23.

    Today it is still unproven whether the conjecture is right. (Oh wait, I have the proof of course, but it is too long to write it on the margin of this page.) 
    Anyway, your task is now to verify Goldbach's conjecture for all even numbers less than a million. 

    Input

    The input will contain one or more test cases. 
    Each test case consists of one even integer n with 6 <= n < 1000000. 
    Input will be terminated by a value of 0 for n.

    Output

    For each test case, print one line of the form n = a + b, where a and b are odd primes. Numbers and operators should be separated by exactly one blank like in the sample output below. If there is more than one pair of odd primes adding up to n, choose the pair where the difference b - a is maximized. If there is no such pair, print a line saying "Goldbach's conjecture is wrong."

    Sample Input

    8
    20
    42
    0
    

    Sample Output

    8 = 3 + 5
    20 = 3 + 17
    42 = 5 + 37
    

    Source

     1 #include<cstdio>
     2 #include<algorithm>
     3 #include<iostream>
     4 #include<string>
     5 #include<cstring>
     6 #include<vector>
     7 using namespace std;
     8 #define max 1000000
     9 int prime[max+5];
    10 bool vis[max+5];
    11 void get_prime(int n){
    12     memset(vis,false,sizeof(vis));
    13     vis[0]=vis[1]=true;
    14     int i=2,index=0;
    15     for(;i<=n;i++){
    16         if(!vis[i]){
    17             prime[index++]=i;
    18             //vis[i]=false;
    19         }
    20         int j=0;
    21         for(;j<index&&prime[j]*i<=n;j++){//????
    22             vis[prime[j]*i]=true;
    23             if(!(i%prime[j]))
    24             break;
    25         }
    26     }
    27 }
    28 int main(){
    29     int n;
    30     get_prime(max);
    31     while(cin>>n&&n){
    32         int i=3,half=n/2;
    33         for(;i<=half;i+=2){//等号一定要取到,存在数等于两个相同质数之和的
    34             if(!vis[i]&&!vis[n-i]){
    35                 break;
    36             }
    37         }
    38         if(i>half)
    39         cout<<"Goldbach's conjecture is wrong."<<endl;
    40         else
    41         cout<<n<<" = "<<i<<" + "<<n-i<<endl;
    42     }
    43     return 0;
    44 }
  • 相关阅读:
    基于Dubbo框架构建分布式服务(一)
    大型网站架构系列:消息队列
    Redis Cluster 分区实现原理
    Redis五种数据结构简介
    Java中创建对象的5种方式
    Netty 系列之 Netty 高性能之道
    Java 抽象类与接口
    谈iOS抓包:Mac下好用的HTTP/HTTPS抓包工具Charles
    Web系统大规模并发——电商秒杀与抢购
    [转]MS SQL Server 数据库连接字符串详解
  • 原文地址:https://www.cnblogs.com/Deribs4/p/4297668.html
Copyright © 2011-2022 走看看