zoukankan      html  css  js  c++  java
  • poj 2262 Goldbach's Conjecture

    Goldbach's Conjecture
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 39353   Accepted: 15077

    Description

    In 1742, Christian Goldbach, a German amateur mathematician, sent a letter to Leonhard Euler in which he made the following conjecture: 
    Every even number greater than 4 can be 
    written as the sum of two odd prime numbers.

    For example: 
    8 = 3 + 5. Both 3 and 5 are odd prime numbers. 
    20 = 3 + 17 = 7 + 13. 
    42 = 5 + 37 = 11 + 31 = 13 + 29 = 19 + 23.

    Today it is still unproven whether the conjecture is right. (Oh wait, I have the proof of course, but it is too long to write it on the margin of this page.) 
    Anyway, your task is now to verify Goldbach's conjecture for all even numbers less than a million. 

    Input

    The input will contain one or more test cases. 
    Each test case consists of one even integer n with 6 <= n < 1000000. 
    Input will be terminated by a value of 0 for n.

    Output

    For each test case, print one line of the form n = a + b, where a and b are odd primes. Numbers and operators should be separated by exactly one blank like in the sample output below. If there is more than one pair of odd primes adding up to n, choose the pair where the difference b - a is maximized. If there is no such pair, print a line saying "Goldbach's conjecture is wrong."

    Sample Input

    8
    20
    42
    0
    

    Sample Output

    8 = 3 + 5
    20 = 3 + 17
    42 = 5 + 37
    

    Source

     1 #include<cstdio>
     2 #include<algorithm>
     3 #include<iostream>
     4 #include<string>
     5 #include<cstring>
     6 #include<vector>
     7 using namespace std;
     8 #define max 1000000
     9 int prime[max+5];
    10 bool vis[max+5];
    11 void get_prime(int n){
    12     memset(vis,false,sizeof(vis));
    13     vis[0]=vis[1]=true;
    14     int i=2,index=0;
    15     for(;i<=n;i++){
    16         if(!vis[i]){
    17             prime[index++]=i;
    18             //vis[i]=false;
    19         }
    20         int j=0;
    21         for(;j<index&&prime[j]*i<=n;j++){//????
    22             vis[prime[j]*i]=true;
    23             if(!(i%prime[j]))
    24             break;
    25         }
    26     }
    27 }
    28 int main(){
    29     int n;
    30     get_prime(max);
    31     while(cin>>n&&n){
    32         int i=3,half=n/2;
    33         for(;i<=half;i+=2){//等号一定要取到,存在数等于两个相同质数之和的
    34             if(!vis[i]&&!vis[n-i]){
    35                 break;
    36             }
    37         }
    38         if(i>half)
    39         cout<<"Goldbach's conjecture is wrong."<<endl;
    40         else
    41         cout<<n<<" = "<<i<<" + "<<n-i<<endl;
    42     }
    43     return 0;
    44 }
  • 相关阅读:
    SPI 1
    运算符
    移位运算
    Comet OJ
    图论 最短路 基础
    CF div3 582 C. Book Reading
    Comet OJ
    VScode 标记“&&”不是此版本中的有效语句分隔符。
    Educational Codeforces Round 63 (Rated for Div. 2)
    1223:An Easy Problem
  • 原文地址:https://www.cnblogs.com/Deribs4/p/4297668.html
Copyright © 2011-2022 走看看