zoukankan      html  css  js  c++  java
  • [JDK1.8]LinkedHashMap源码浅析

    引言

    上篇我们了解了JDK1.7中LinkedHashMap的源码,这篇文章试着分析一下JDK1.8中LinkedHashMap的源码(由于1.8HashMap做了优化,所以作为其子类的LinkedHashMap自然也做了一些修改.基于1.8的HashMap源码分析在之前的文章已经有了,不多阐述)

    在每次插入数据,或者访问、修改数据时,都会增加节点(插入时)或调整链表的节点顺序。

    LinkedHashMap的成员变量

    区别于1.7中的成员变量标志位置只有一个header节点;
    JDK1.8中有一个head和一个tail节点;

    JDK1.7

    	/**
         * The head of the doubly linked list.
         */
        private transient Entry<K,V> header;
    
        /**
         * The iteration ordering method for this linked hash map: <tt>true</tt>
         * for access-order, <tt>false</tt> for insertion-order.
         *
         * @serial
         */
        private final boolean accessOrder;
    

    JDK1.8

    private static final long serialVersionUID = 3801124242820219131L;
    
    // 用于指向双向链表的头部, 双向链表头节点(最老)
    transient LinkedHashMap.Entry<K,V> head;
    //用于指向双向链表的尾部,双向列表尾节点(最新)
    transient LinkedHashMap.Entry<K,V> tail;
    /**
     * 用来指定LinkedHashMap的迭代顺序,
     * true则表示按照基于访问的顺序来排列,意思就是最近使用的entry,放在链表的最末尾
     * false则表示按照插入顺序来
     */ 
    final boolean accessOrder;
    

    构造函数

    1.8

    public LinkedHashMap(int initialCapacity, float loadFactor) {
            super(initialCapacity, loadFactor);
            accessOrder = false;
        }
    
        
        public LinkedHashMap(int initialCapacity) {
            super(initialCapacity);
            accessOrder = false;
        }
    
        /**
         * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
         * with the default initial capacity (16) and load factor (0.75).
         */
        public LinkedHashMap() {
            super();
            accessOrder = false;
        }
    
        /**
         * Constructs an insertion-ordered <tt>LinkedHashMap</tt> instance with
         * the same mappings as the specified map.  The <tt>LinkedHashMap</tt>
         * instance is created with a default load factor (0.75) and an initial
         * capacity sufficient to hold the mappings in the specified map.
         *
         * @param  m the map whose mappings are to be placed in this map
         * @throws NullPointerException if the specified map is null
         */
        public LinkedHashMap(Map<? extends K, ? extends V> m) {
            super();
            accessOrder = false;
            putMapEntries(m, false);
        }
    
        /**
         * Constructs an empty <tt>LinkedHashMap</tt> instance with the
         * specified initial capacity, load factor and ordering mode.
         *
         * @param  initialCapacity the initial capacity
         * @param  loadFactor      the load factor
         * @param  accessOrder     the ordering mode - <tt>true</tt> for
         *         access-order, <tt>false</tt> for insertion-order
         * @throws IllegalArgumentException if the initial capacity is negative
         *         or the load factor is nonpositive
         */
        public LinkedHashMap(int initialCapacity,
                             float loadFactor,
                             boolean accessOrder) {
            super(initialCapacity, loadFactor);
            this.accessOrder = accessOrder;
        }
    

    1.8的构造函数和1.7的构造函数有差异的在接收map的构造函数;
    1.7

    public LinkedHashMap(Map<? extends K, ? extends V> m) {
            super(m);
            accessOrder = false;
        }
    

    super(m)调用hashMap的构造函数进行初始化:

    public HashMap(Map<? extends K, ? extends V> m) {
            this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
                          DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
            inflateTable(threshold);
    
            putAllForCreate(m);
        }
    

    putAllForCreate(m)内部循环调用putForCreate(K key, V value)

    private void putForCreate(K key, V value) {
            int hash = null == key ? 0 : hash(key);
            int i = indexFor(hash, table.length);
    
            /**
             * Look for preexisting entry for key.  This will never happen for
             * clone or deserialize.  It will only happen for construction if the
             * input Map is a sorted map whose ordering is inconsistent w/ equals.
             */
            for (Entry<K,V> e = table[i]; e != null; e = e.next) {
                Object k;
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k)))) {
                    e.value = value;
                    return;
                }
            }
    		//如果没有存在的key对应的Entry,那么新建Entry
            createEntry(hash, key, value, i);
        }
    
    void createEntry(int hash, K key, V value, int bucketIndex) {
            Entry<K,V> e = table[bucketIndex];
            table[bucketIndex] = new Entry<>(hash, key, value, e);
            size++;
        }
    

    1.8

    public LinkedHashMap(Map<? extends K, ? extends V> m) {
            super();
            accessOrder = false;
            putMapEntries(m, false);
        }
    
    /**
         * Implements Map.putAll and Map constructor
         *
         * @param m the map
         * @param evict false when initially constructing this map, else
         * true (relayed to method afterNodeInsertion).
         */
        final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
            int s = m.size();
            if (s > 0) {
                if (table == null) { // pre-size
                    float ft = ((float)s / loadFactor) + 1.0F;
                    int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                             (int)ft : MAXIMUM_CAPACITY);
                    if (t > threshold)
                        threshold = tableSizeFor(t);
                }
                else if (s > threshold)
                    resize();
                for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
                    K key = e.getKey();
                    V value = e.getValue();
                    //evict false when initially constructing this map, else true (relayed to method afterNodeInsertion).
                    //调用putVal函数
                    putVal(hash(key), key, value, false, evict);
                }
            }
        }
    

    Entry

    LinkedHashMap 1.8中的Entry和1.7中的区别不大,都是Map.Entry<K,V>的实现
    在这里插入图片描述
    同样的:
    Entry里面的属性:
    1、K key
    2、V value
    3、Entry<K, V> next
    4、int hash
    5、Entry<K, V> before
    6、Entry<K, V> after

    其中前面四个,也就是红色部分是从HashMap.Entry中继承过来的;后面两个,也就是蓝色部分是LinkedHashMap独有的。不要搞错了next和before、After,next是用于维护HashMap指定table位置上连接的Entry的顺序的,before、After是用于维护Entry插入的先后顺序的。

    1.8中LinkedHashMap结构如下图:
    有head和tail节点;
    在这里插入图片描述

    put

    LinkedHashMap的没有自己的put方法的实现,而是使用父类HashMap的put方法:
    在正常新增之后,调用afterNodeAccess(e)afterNodeInsertion(evict)让LinkedHashMap自己做后续处理

    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                       boolean evict) {
            Node<K,V>[] tab; Node<K,V> p; int n, i;
            //存放元素的table桶不存在,则对table数组进行初始化
            if ((tab = table) == null || (n = tab.length) == 0)
                n = (tab = resize()).length;
                //用来存放目标hash值得节点不存在,新建
            if ((p = tab[i = (n - 1) & hash]) == null)
                tab[i] = newNode(hash, key, value, null);
            else {
            	//hash相同,key值相同
                Node<K,V> e; K k;
                if (p.hash == hash &&
                    ((k = p.key) == key || (key != null && key.equals(k))))
                    e = p;
                else if (p instanceof TreeNode)
                //是否是二叉树节点,如是放入二叉树中
                    e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
                else {
                    for (int binCount = 0; ; ++binCount) {
                        if ((e = p.next) == null) {
                            p.next = newNode(hash, key, value, null);
                            if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            	//树化
                                treeifyBin(tab, hash);
                            break;
                        }
                        if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                            break;
                        p = e;
                    }
                }
                if (e != null) { // existing mapping for key
                    V oldValue = e.value;
                    if (!onlyIfAbsent || oldValue == null)
                        e.value = value;
                    afterNodeAccess(e);
                    return oldValue;
                }
            }
            ++modCount;
            if (++size > threshold)
                resize();
            afterNodeInsertion(evict);
            return null;
        }
    
    //回调函数,新节点插入之后回调 , 根据evict 和   判断是否需要删除最老插入的节点。
        void afterNodeInsertion(boolean evict) { // possibly remove eldest
            LinkedHashMap.Entry<K,V> first;
            //LinkedHashMap 默认返回false 则不删除节点
            if (evict && (first = head) != null && removeEldestEntry(first)) {
                K key = first.key;
                removeNode(hash(key), key, null, false, true);
            }
        }
    	void afterNodeAccess(Node<K,V> e) { // move node to last
            LinkedHashMap.Entry<K,V> last;
            if (accessOrder && (last = tail) != e) {
                LinkedHashMap.Entry<K,V> p =
                    (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
                p.after = null;
                if (b == null)
                    head = a;
                else
                    b.after = a;
                if (a != null)
                    a.before = b;
                else
                    last = b;
                if (last == null)
                    head = p;
                else {
                    p.before = last;
                    last.after = p;
                }
                tail = p;
                ++modCount;
            }
        }
    
        //LinkedHashMap 默认返回false 则不删除节点。 返回true 代表要删除最早的节点。通常构建一个LruCache会在达到Cache的上限是返回true
        protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
            return false;
        }
    

    HashMap专门预留给LinkedHashMap的afterNodeAccess() afterNodeInsertion() afterNodeRemoval() 方法。

    	 // Callbacks to allow LinkedHashMap post-actions
        void afterNodeAccess(Node<K,V> p) { }
        void afterNodeInsertion(boolean evict) { }
        void afterNodeRemoval(Node<K,V> p) { }
    

    remove

    LinkedHashMap也没有重写remove()方法,它使用的是HashMap的remove方法。
    remove(Object key)为例:

    public V remove(Object key) {
            Node<K,V> e;
            return (e = removeNode(hash(key), key, null, false, true)) == null ?
                null : e.value;
        }
    

    如果movable参数是false,在删除节点时,不移动其他节点;

    final Node<K,V> removeNode(int hash, Object key, Object value,
                                   boolean matchValue, boolean movable) {
            // p 是待删除节点的前置节点
            Node<K,V>[] tab; Node<K,V> p; int n, index;
            //如果哈希表不为空,则根据hash值算出的index下是否有节点。
            if ((tab = table) != null && (n = tab.length) > 0 &&
                (p = tab[index = (n - 1) & hash]) != null) {
                //node是待删除节点
                Node<K,V> node = null, e; K k; V v;
                //如果链表头的就是需要删除的节点
                if (p.hash == hash &&
                    ((k = p.key) == key || (key != null && key.equals(k))))
                    node = p;//将待删除节点引用赋给node
                else if ((e = p.next) != null) {//否则循环遍历 找到待删除节点,赋值给node
                    if (p instanceof TreeNode)
                        node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                    else {
                        do {
                            if (e.hash == hash &&
                                ((k = e.key) == key ||
                                 (key != null && key.equals(k)))) {
                                node = e;
                                break;
                            }
                            p = e;
                        } while ((e = e.next) != null);
                    }
                }
                //如果有待删除节点node,  且 matchValue为false,或者值也相等
                if (node != null && (!matchValue || (v = node.value) == value ||
                                     (value != null && value.equals(v)))) {
                    if (node instanceof TreeNode)
                        ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                    else if (node == p)//如果node ==  p,说明是链表头是待删除节点
                        tab[index] = node.next;
                    else//否则待删除节点在表中间
                        p.next = node.next;
                    ++modCount;//修改modCount
                    --size;//修改size
                    afterNodeRemoval(node);//LinkedHashMap回调函数
                    return node;
                }
            }
            return null;
        }
    
    //在删除节点e时,同步将e从双向链表上删除
        void afterNodeRemoval(Node<K,V> e) { // unlink
            LinkedHashMap.Entry<K,V> p =
                (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
            //待删除节点 p 的前置后置节点都置空
            p.before = p.after = null;
            //如果前置节点是null,则现在的头结点应该是后置节点a
            if (b == null)
                head = a;
            else//否则将前置节点b的后置节点指向a
                b.after = a;
            //同理如果后置节点时null ,则尾节点应是b
            if (a == null)
                tail = b;
            else//否则更新后置节点a的前置节点为b
                a.before = b;
        }
    
    
    

    get 查

    LinkedHashMap重写了get()和getOrDefault()方法:

    public V get(Object key) {
            Node<K,V> e;
            if ((e = getNode(hash(key), key)) == null)
                return null;
            if (accessOrder)//accessOrder 为true时(按访问顺序排序)
                afterNodeAccess(e);
            return e.value;
        }
     public V getOrDefault(Object key, V defaultValue) {
           Node<K,V> e;
           if ((e = getNode(hash(key), key)) == null)
               return defaultValue;
           if (accessOrder)
               afterNodeAccess(e);
           return e.value;
       }
    

    Node为HashMap的节点类;
    而LinkedHashMap的Entry为其子类;

    //此函数执行的效果就是将最近使用的Node,放在链表的最末尾
    void afterNodeAccess(Node<K,V> e) {
      LinkedHashMap.Entry<K,V> last;
      //仅当按照LRU原则且e不在最末尾,才执行修改链表,将e移到链表最末尾的操作
      if (accessOrder && (last = tail) != e) {
        //将e赋值临时节点p, b是e的前一个节点, a是e的后一个节点
        LinkedHashMap.Entry<K,V> p =
          (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
        //设置p的后一个节点为null,因为执行后p在链表末尾,after肯定为null
        p.after = null;
        //p前一个节点不存在,情况一
        if (b == null) // ①
          head = a;
        else
          b.after = a;
        if (a != null) 
          a.before = b;
        //p的后一个节点不存在,情况二
        else // ②
          last = b;
        //情况三
        if (last == null) // ③
          head = p;
        //正常情况,将p设置为尾节点的准备工作,p的前一个节点为原先的last,last的after为p
        else {
          p.before = last;
          last.after = p;
        }
        //将p设置为将p设置为尾节点
        tail = p;
        // 修改计数器+1
        ++modCount;
      }
    }
    

    在这里插入图片描述

    下面来简单说明一下:

    正常情况下:查询的p在链表中间,那么将p设置到末尾后,它原先的前节点b和后节点a就变成了前后节点。
    情况一:p为头部,前一个节点b不存在,那么考虑到p要放到最后面,则设置p的后一个节点a为head
    情况二:p为尾部,后一个节点a不存在,那么考虑到统一操作,设置last为b
    情况三:p为链表里的第一个节点,head=p

    containsKey

    LinkedHashMap使用HashMap的containsKey方法:
    之所以不去重写的原因在于:
    hashMap中containsKey调用了getNode方法,它直接根据key计算出hash值,找到这个key的哈希桶,只需遍历这个哈希桶中有没有这个key。如果重写去遍历keySet效率无法再有提高.

    public boolean containsKey(Object key) {
            return getNode(hash(key), key) != null;
        }
    

    containsValue

    LinkedHashMap重写了containsValue方法;更为高效,而高效来源于其双端链表结构,而HashMap的查找就需要先遍历数组,在table[i]的基础上遍历链表(或树);

    LinkedHashMap:

    public boolean containsValue(Object value) {
            for (LinkedHashMap.Entry<K,V> e = head; e != null; e = e.after) {
                V v = e.value;
                if (v == value || (value != null && value.equals(v)))
                    return true;
            }
            return false;
        }
    

    HashMap:

    public boolean containsValue(Object value) {
            Node<K,V>[] tab; V v;
            if ((tab = table) != null && size > 0) {
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K,V> e = tab[i]; e != null; e = e.next) {
                        if ((v = e.value) == value ||
                            (value != null && value.equals(v)))
                            return true;
                    }
                }
            }
            return false;
        }
    

    遍历

    LinkedHashMap的迭代器为遍历节点提供了自己的实现——LinkedHashIterator,对于Key、Value、Entry的3个迭代器,都继承自它。

    final class LinkedKeyIterator extends LinkedHashIterator
            implements Iterator<K> {
            public final K next() { return nextNode().getKey(); }
        }
    
        final class LinkedValueIterator extends LinkedHashIterator
            implements Iterator<V> {
            public final V next() { return nextNode().value; }
        }
    
        final class LinkedEntryIterator extends LinkedHashIterator
            implements Iterator<Map.Entry<K,V>> {
            public final Map.Entry<K,V> next() { return nextNode(); }
        }
        abstract class LinkedHashIterator {
            //下一个节点
            LinkedHashMap.Entry<K,V> next;
            //当前节点
            LinkedHashMap.Entry<K,V> current;
            int expectedModCount;
    
            LinkedHashIterator() {
                //初始化时,next 为 LinkedHashMap内部维护的双向链表的表头
                next = head;
                //记录当前modCount,以满足fail-fast
                expectedModCount = modCount;
                //当前节点为null
                current = null;
            }
            //判断是否还有next
            public final boolean hasNext() {
                //就是判断next是否为null,默认next是head  表头
                return next != null;
            }
            //nextNode() 就是迭代器里的next()方法 。
            //该方法的实现可以看出,迭代LinkedHashMap,就是从内部维护的双链表的表头开始循环输出。
            final LinkedHashMap.Entry<K,V> nextNode() {
                //记录要返回的e。
                LinkedHashMap.Entry<K,V> e = next;
                //判断fail-fast
                if (modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                //如果要返回的节点是null,异常
                if (e == null)
                    throw new NoSuchElementException();
                //更新当前节点为e
                current = e;
                //更新下一个节点是e的后置节点
                next = e.after;
                //返回e
                return e;
            }
            //删除方法 最终还是调用了HashMap的removeNode方法
            public final void remove() {
                Node<K,V> p = current;
                if (p == null)
                    throw new IllegalStateException();
                if (modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                current = null;
                K key = p.key;
                removeNode(hash(key), key, null, false, false);
                expectedModCount = modCount;
            }
        }
    
    
    

    LRUCache

    见:https://blog.csdn.net/ShelleyLittlehero/article/details/82954474

    参考:https://www.cnblogs.com/joemsu/p/7787043.html

  • 相关阅读:
    采样定理
    空间谱专题03:时空特性与采样定理
    常见的矩阵形式
    【Windows】XShell中使用小键盘和ALT键(作Meta键),使BackSpace正常
    【Linux】Ubuntu13.10搭建gitlab报错信息及解决
    〖Android〗ant build android project, setting android.jar precedence
    〖Linux〗使用命令行切换触摸板的状态on/off/toggle
    【Android】ant编译aidl的错误
    【Android】源码external/目录中在编译过程中生成的文件列表
    〖Linux〗实时更新 hosts 文件的脚本
  • 原文地址:https://www.cnblogs.com/DiZhang/p/12544873.html
Copyright © 2011-2022 走看看