zoukankan      html  css  js  c++  java
  • Connections between cities(LCA)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2874

    题目:

    Problem Description
    After World War X, a lot of cities have been seriously damaged, and we need to rebuild those cities. However, some materials needed can only be produced in certain places. So we need to transport these materials from city to city. For most of roads had been totally destroyed during the war, there might be no path between two cities, no circle exists as well.
    Now, your task comes. After giving you the condition of the roads, we want to know if there exists a path between any two cities. If the answer is yes, output the shortest path between them.
     
    Input
    Input consists of multiple problem instances.For each instance, first line contains three integers n, m and c, 2<=n<=10000, 0<=m<10000, 1<=c<=1000000. n represents the number of cities numbered from 1 to n. Following m lines, each line has three integers i, j and k, represent a road between city i and city j, with length k. Last c lines, two integers i, j each line, indicates a query of city i and city j.
     
    Output
    For each problem instance, one line for each query. If no path between two cities, output “Not connected”, otherwise output the length of the shortest path between them.
     
    Sample Input
    5 3 2
    1 3 2
    2 4 3
    5 2 3
    1 4
    4 5
    Sample Output
    Not connected
    6
     思路:用一个vis数组来处理两个节点是否联通,不连通则输出“Not connected”。剩下的联通点之间的距离就是裸的LCA。
    代码实现如下:
     1 #include <cstdio>
     2 #include <vector>
     3 #include <cstring>
     4 using namespace std;
     5 
     6 const int maxn = 1e4 + 7;
     7 int n, m, q, u, v, k, cnt;
     8 int cost[maxn], deep[maxn], fa[maxn][30], vis[maxn];
     9 
    10 struct edge {
    11     int v, l;
    12     edge(int v = 0, int l = 0) : v(v), l(l) {}
    13 };
    14 
    15 vector<edge> G[maxn];
    16 
    17 void init() {
    18     for(int i = 0; i <= n; i++) {
    19         G[i].clear();
    20     }
    21     cnt = 0;
    22     memset(vis, 0, sizeof(vis));
    23     memset(cost, 0, sizeof(cost));
    24 }
    25 
    26 void dfs(int u, int d, int p) {
    27     fa[u][0] = p;
    28     deep[u] = d;
    29     vis[u] = cnt;
    30     for(int i = 0; i < G[u].size(); i++) {
    31         int v = G[u][i].v;
    32         if(v != p) {
    33             cost[v] = cost[u] + G[u][i].l;
    34             dfs(v, d + 1, u);
    35         }
    36     }
    37 }
    38 
    39 void lca() {
    40     for(int i = 1; i <= n; i++) {
    41         for(int j = 1; (1 << j) <= n; j++) {
    42             fa[i][j] = -1;
    43         }
    44     }
    45     for(int j = 1; (1 << j) <= n; j++) {
    46         for(int i = 1; i <= n; i++) {
    47             if(fa[i][j-1] != -1) {
    48                 fa[i][j] = fa[fa[i][j-1]][j-1];
    49             }
    50         }
    51     }
    52 }
    53 
    54 int query(int u, int v) {
    55     if(deep[u] < deep[v]) swap(u, v);
    56     int k;
    57     for(k = 0; (1 << (k+1)) <= deep[u]; k++);
    58     for(int i = k; i >= 0; i--) {
    59         if(deep[u] - (1 << i) >= deep[v]) {
    60             u = fa[u][i];
    61         }
    62     }
    63     if(u == v) return u;
    64     for(int i = k; i >= 0; i--) {
    65         if(fa[u][i] != -1 && fa[u][i] != fa[v][i]) {
    66             u = fa[u][i];
    67             v = fa[v][i];
    68         }
    69     }
    70     return fa[u][0];
    71 }
    72 
    73 int main() {
    74     while(~scanf("%d%d%d", &n, &m, &q)) {
    75         init();
    76         while(m--) {
    77             scanf("%d%d%d", &u, &v, &k);
    78             G[u].push_back(edge(v, k));
    79             G[v].push_back(edge(u, k));
    80         }
    81         for(int i = 1; i <= n; i++) {
    82             if(vis[i] == 0) {
    83                 cnt++;
    84                 dfs(i, 0, -1);
    85             }
    86         }
    87         lca();
    88         for(int i = 0; i < q; i++) {
    89             scanf("%d%d", &u, &v);
    90             if(vis[u] != vis[v]) {
    91                 printf("Not connected
    ");
    92             } else {
    93                 printf("%d
    ", cost[u] + cost[v] - 2 * cost[query(u,v)]);
    94             }
    95         }
    96     }
    97     return 0;
    98 }
  • 相关阅读:
    Ubuntu安装adobe的Source Code Pro
    Oracle实现主键自增的几种方式
    Oracle主键自增
    activity 根据流程实例ID删除流程实例、删除流程部署
    解决报错:错误1130- Host xxx is not allowed to connect to this MariaDb server
    Idea-每次修改JS文件都需要重启Idea才能生效解决方法
    html中<a href> </a>的用法
    Mysql8_数据库基础操作
    java反射及Method的Invoke方法(转载)
    oracle查询数据插入时间
  • 原文地址:https://www.cnblogs.com/Dillonh/p/9135364.html
Copyright © 2011-2022 走看看