zoukankan      html  css  js  c++  java
  • Bit Magic HDU 4421 2-Sat

    Bit Magic

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 1383    Accepted Submission(s): 398


    Problem Description
    Yesterday, my teacher taught me about bit operators: and (&), or (|), xor (^). I generated a number table a[N], and wrote a program to calculate the matrix table b[N][N] using three kinds of bit operator. I thought my achievement would get teacher's attention.
    The key function is the code showed below.

    There is no doubt that my teacher raised lots of interests in my work and was surprised to my talented programming skills. After deeply thinking, he came up with another problem: if we have the matrix table b[N][N] at first, can you check whether corresponding number table a[N] exists?
     
    Input
    There are multiple test cases.
    For each test case, the first line contains an integer N, indicating the size of the matrix. (1 <= N <= 500).
    The next N lines, each line contains N integers, the jth integer in ith line indicating the element b[i][j] of matrix. (0 <= b[i][j] <= 2 31 - 1)
     
    Output
    For each test case, output "YES" if corresponding number table a[N] exists; otherwise output "NO".
     
    Sample Input
    2 0 4 4 0 3 0 1 24 1 0 86 24 86 0
     
    Sample Output
    YES NO
     
    Source
     
    Recommend
    zhuyuanchen520
     
    /*
     * Author:  
     * Created Time:  2013/10/25 20:53:54
     * File Name: A.cpp
     * solve: A.cpp
     */
    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    #include<cmath>
    #include<algorithm>
    #include<string>
    #include<map>
    #include<stack>
    #include<set>
    #include<iostream>
    #include<vector>
    #include<queue>
    //ios_base::sync_with_stdio(false);
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    
    using namespace std;
    #define sz(v) ((int)(v).size())
    #define rep(i, a, b) for (int i = (a); i < (b); ++i)
    #define repf(i, a, b) for (int i = (a); i <= (b); ++i)
    #define repd(i, a, b) for (int i = (a); i >= (b); --i)
    #define clr(x) memset(x,0,sizeof(x))
    #define clrs( x , y ) memset(x,y,sizeof(x))
    #define out(x) printf(#x" %d
    ", x)
    #define sqr(x) ((x) * (x))
    typedef long long LL;
    
    const int INF = 1000000000;
    const double eps = 1e-8;
    const int maxn = 510;
    
    int sgn(const double &x) {  return (x > eps) - (x < -eps); }
    
    int b[maxn][maxn];
    int c[maxn][maxn];
    int a[maxn];
    int n;
    bool cal(int x,int y)
    {
        a[0] = x;
        rep(i,0,n)
            rep(j,0,n)
            c[i][j] = (b[i][j] >> y) & 1;//枚举每一位
    
        rep(i,1,n)
            a[i] = (c[i][i-1] == 0 ? a[i-1] : 1 - a[i-1]); 
    
        rep(i,0,n)
            rep(j,0,n)
            {
                if(i == j)
                {
                    if(c[i][j])
                        return 0;
                }else if(i%2 == 1 && j%2 == 1)
                {
                    if(c[i][j] != (a[i]|a[j]))
                        return 0;
                }else if(i%2 == 0 && j%2 == 0)
                {
                    if(c[i][j] != (a[i]&a[j]))
                        return 0;
                }else
                {
                    if(c[i][j] != (a[i] ^ a[j]))
                        return 0;
                }
            }
        return 1;
    }
    bool solve()
    {
        repf(i,0,31)
            if(!cal(0,i) && !cal(1,i))
                return 0;
        return 1;
    }
    int main() 
    {
        //freopen("in.txt","r",stdin);
        while(scanf("%d",&n) == 1)
        {
            rep(i,0,n)
                rep(j,0,n)
                scanf("%d",&b[i][j]);
            if(solve())
                cout<<"YES"<<endl;
            else
                cout<<"NO"<<endl;
            
        }
        return 0;
    }

    后续附上2-Sat的解法

  • 相关阅读:
    openfl使用64位的ndk时,编译报错的问题!
    Haxe是何物?
    jsp中如何判断el表达式中的BigDecimal==0
    如何在springmvc的请求过程中获得地址栏的请求
    【原创】【滑块验证码】
    【原创】【aes加密】
    【原创】【qrcodejs2】生成二维码
    【原创】【ueditor】监听内容
    【原创】【ueditor】内容过多时 菜单控件遮挡页面
    js杂谈
  • 原文地址:https://www.cnblogs.com/DreamHighWithMe/p/3394612.html
Copyright © 2011-2022 走看看