zoukankan      html  css  js  c++  java
  • Project Euler 26-50

    A.Reciprocal cycles

    求小数循环节的方法

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <string>
    
    using namespace std;
    
    const int MAXN = 1e4+100;
    int a[MAXN];
    int c[MAXN];
    int mark[MAXN];
    
    int fun(int x){
        int h,d,id=1,sum=0;
        memset(c,0,sizeof c);
        memset(mark,0,sizeof mark);
        d = 1;
        c[1] = mark[1] = 1;
        while(d!=0){
            h = d*10%x;
            id++;
            mark[h]++;
            d = h;
            //cout<<id<<" ";
            if(mark[h]>1){
                sum = id-c[h];
                break;
            }
            c[h] = id;
            //cout<<h<<" "<<endl;
        }
        if(d==0)sum = 0;
    
        return sum;
    }
    
    int main()
    {
        //cout<<fun(9)<<endl;
        int mmax = 0;
        a[1] = 1;
        int pre = -1;
        for(int i=2;i<MAXN;i++){
            int x = fun(i);
            //mmax = max(mmax,x);
            //a[i] = mmax;
            if(mmax<x){
                pre = i;
                mmax = x;
            }
            a[i] = pre;
        }
        //cout<<mmax<<endl;
        int T;
        scanf("%d",&T);
        while(T--){
            int n;
            scanf("%d",&n);
            printf("%d
    ",a[n-1]);
        }
        //cout << "Hello world!" << endl;
        return 0;
    }
    View Code

    C.Number spiral diagonals

    主要推公式比较复杂

    没草稿纸 推了 好久好久

    学习了了一个公式

    1*2+2*3+3*4+..n*(n+1) = n*(n+1)*(n+2)/3

    #include <cstdio>
    #include <iostream>
    #include <cmath>
    #include <string>
    #include <cstring>
    
    using namespace std;
    
    typedef long long ll;
    const ll MOD = 1e9+7;
    
    ll mult(ll a,ll b){
        ll ans = 0;
        a %= MOD;
        while(b){
            if(b&1){
                ans += a;
                ans %= MOD;
                b--;
            }
            a *= 2;
            b>>=1;
            a %= MOD;
        }
        return ans;
    }
    
    ll qb(ll a,ll b){
        ll ans = 1;
        a %= MOD;
        while(b){
            if(b&1){
                ans = mult(ans,a);
                b--;
            }
            a = mult(a,a);
            b>>=1;
        }
        return ans;
    }
    
    int main(){
        //cout<<mult(3,0);
        //cout<<mult(4,2);
        ll x = qb(3,MOD-2);
        //cout<<x<<endl;
        //cout<<12*x%MOD<<endl;
        //cout<<11*x*3%MOD<<endl;
       // cout<<3*x%MOD<<endl;
        int T;
        scanf("%d",&T);
        while(T--){
            ll n;
            scanf("%lld",&n);
            n = n/2+1;
            //ll ans = 1+24*(n-1)%MOD+10*(n-1)%MOD*(n-2)%MOD+16*(n-2)%MOD*(n-1)%MOD*n%MOD*x%MOD;
            //ll ans = 16*(n-2)%MOD*(n-1)%MOD*n%MOD*x%MOD;
            ll ans = 1+mult(24,n-1)+mult(mult(10,n-1),n-2)+mult(16,mult(n-2,mult(n-1,mult(n,x))));
            ans %= MOD;
            //ll ans = (1LL)*10*(n-1)%MOD*(n-2)%MOD;
            //ans %= MOD;
            cout<<ans<<endl;
            //printf("%lld
    ",x);
        }
        return 0;
    }
    View Code

    E.Distinct powers

    题意比较清楚就不说了,这题让我学习set的用法,虽然并没有什么用

    回家之后一直想,算是找到了比较简单的方法,但是还是错了第10组数据...

    这题的通过率只有30%多,算是非常低的啦

    现在在问出题者索求数据,希望可以给我吧qaq

    还是贴一下知错了一组数据的代码

     
     
    有毒 我昨晚在github终于找到一份别人的代码,然后对比数据,发现就是1000的时候才会出错,而且只有一组,(int)log(1000)/log(10)<3你敢信。。。。然后(int)log(10000)/log(10)=4,你坑谁呀。。。
    最后发现log(x)+0.000001 pow(10,x)+0.000001 灰常有用
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <string>
    #include <cmath>
    #include <cstring>
    
    using namespace std;
    
    typedef long long ll;
    const int MAXN = 3e6+100;
    
    int mark[MAXN];
    ll a[50];
    
    int main()
    {
        int n;
        scanf("%d",&n);
        int x = log2(n*1.0);
        //cout<<x<<endl;
        for(int i=1;i<=x;i++){
            ll sum = 0,t = 2*i;
            for(int j=1;j<n;j++){
                if(!mark[t]){
                    sum++;
                    mark[t] = 1;
                }
                t = t+i;
            }
           // cout<<t<<" ";
            a[i] = sum;
        }
      //  cout<<endl;
        //cout<<x<<endl;
        //for(int i=1;i<=x;i++)cout<<a[i]<<" "<<endl;
        memset(mark,0,sizeof mark);
        ll ans = 0;
        for(ll i=2;i<=n;i++){
            if(!mark[i]){
                double t = log(n*1.0)/log(i*1.0);
                int tt = (int)(t+0.00001);
                //cout<<t<<" "<<tt<<endl;
                for(ll j=1;j<=tt;j++)ans+= a[j];
                for(ll j=i*i;j<=n;j=j*i)mark[j] = 1;
            }
            //cout<<ans<<" ";
        }
        //cout<<endl;
        cout<<ans<<endl;
        //cout << "Hello world!" << endl;
        return 0;
    }
    View Code

    F: Coin sums

    最烦这种枚举题目了,网上找到了一个很棒的题解

     https://www.thanassis.space/euler31.html

    仔细想想,还是比较简单的状态转移的

    #include <cmath>
    #include <cstdio>
    #include <vector>
    #include <iostream>
    #include <algorithm>
    #include <set>
    using namespace std;
    typedef long long  ll;
    const int MOD = 1e9+7;
    const int MAXN = 1e5;
    ll dp[MAXN+100][8];
    int a[8] = {1,2,5,10,20,50,100,200};
    int main() {
        /* Enter your code here. Read input from STDIN. Print output to STDOUT */
        for(int i=0;i<8;i++)dp[0][i] = 1;
        for(int i=1;i<=MAXN;i++)dp[i][0] = 1;
        for(int i=1;i<=MAXN;i++){
            for(int j=1;j<8;j++){
                if(i>=a[j]){
                    dp[i][j] = dp[i][j-1];
                    dp[i][j] += dp[i-a[j]][j];  //  到达[i,j]只有两条路径
                    dp[i][j] %= MOD;
                }
                else{
                    dp[i][j] = dp[i][j-1];
                    dp[i][j] %= MOD;
                }
            }
        }
        /*for(int i=1;i<=6;i++){
            for(int j=0;j<=5;j++){
                cout<<dp[i][j]<<" ";
            }
            cout<<endl;
        }*/
        int T;
        scanf("%d",&T);
        while(T--){
            int n;
            scanf("%d",&n);
            cout<<dp[n][7]<<endl;
        }
        return 0;
    }
    View Code

     G.Pandigital products

    看了一下别人的代码,其实这个程序写的挺渣的

    不过打表超级暴力的思想可以借鉴一下,有些时候想暴力也不知道怎么简化。。。

    其实这个代码跑了150s,看看思想就好了呵呵。。。

    #include <cstdio>
    #include <iostream>
    #include <string>
    #include <cstring>
    #include <cmath>
    #include <set>
    #include <sstream>
    using namespace std;
    int a[10];
    set<int>st;
    
    char ts[100];
    
    bool ispandigit(int n,int len){
        int mark[10];
        memset(mark,0,sizeof mark);
        if(len!=n)return false;
        for(int i=0;i<len;i++){
            int t = int(ts[i]-'0');
            if(t>n||t==0||mark[t]){
                return false;
            }
            mark[t] = 1;
        }
        return true;
    }
    
    int main(){
        for(int i=4;i<=9;i++){
            //if(i!=4)continue;
            int t = pow(10,i/2);
            //cout<<t<<endl;
            st.clear();
            int sum = 0;
            for(int j=1;j<t;j++){
                for(int k=j+1;k<t;k++){
                    int ans = j*k;
                    int top = 0;
                    sprintf(ts,"%d",j);
                    //top = strlen(ts);
                    top = strlen(ts);
                    sprintf(ts+top,"%d",k);
                    top = strlen(ts);
                    sprintf(ts+top,"%d",ans);
                    //ts[++top] = '';
                    top = strlen(ts);
                    //printf("%s
    ",ts);
                    if(ispandigit(i,top)){
                        if(st.find(ans)==st.end()){
                            sum+= ans;
                            st.insert(ans);
                            //cout<<j<<" "<<k<<" "<<ans<<endl;
                        }
                    }
                }
            }
            a[i] = sum;
        }
        //cout<<endl;
        for(int i=4;i<=9;i++){
            cout<<a[i]<<" ";
        }
       // cout<<endl;
        return 0;
    }
    View Code

    N.Integer right triangles

    题意:求一个数最多能被拆成几个勾股数

    学习了原始勾股数的性质

    a = i*i-j*j

    b = 2*i*j

    c = i*i+j*j

    且a>0&&gcd(i,j) = 1

    #include <cmath>
    #include <cstdio>
    #include <vector>
    #include <iostream>
    #include <algorithm>
    #include <string>
    using namespace std;
    
    const int MAXN = 5e6+100;
    
    int ta[MAXN],ans[MAXN];
    
    int gcd(int a,int b){
        if(b==0)return a;
        return gcd(b,a%b);
    }
    
    int main(){
        for(int i=1;;i++){
            if(2*i*i+2*i>MAXN)break;
            for(int j=1;j<i;j++){
                if((i-j)%2==1&&gcd(i,j)==1){
                    for(int k=1;;k++){
                        int a = k*(i*i-j*j);
                        int b = k*2*i*j;
                        int c = k*(i*i+j*j);
                        if(a<=0)break;
                        if(a+b+c>=MAXN)break;
                        ta[a+b+c]++;
                    }
                }
            }
        }
        //cout<<"hahha"<<endl;
        int mmax = -1;
        for(int i=1;i<MAXN;i++){
            if(ta[i]>mmax){ans[i] = i;mmax = ta[i];}
            else ans[i] = ans[i-1];
        }
    
        int T;
        scanf("%d",&T);
        while(T--){
            int n;
            scanf("%d",&n);
            cout<<ans[n]<<endl;
        }
    
        return 0;
    }
    View Code
    在一个谎言的国度,沉默就是英雄
  • 相关阅读:
    python的函数修饰符(装饰器)
    hdu1175连连看(dfs+细节)
    hdu2553N皇后问题(dfs,八皇后)
    hdu1045Fire Net(经典dfs)
    hdu1050Moving Tables(贪心)
    hdu2037今年暑假不AC(贪心,活动安排问题)
    hdu1052Tian Ji -- The Horse Racing(贪心,细节多)
    hdu1009FatMouse' Trade(贪心)
    hdu1455Sticks(经典dfs+剪枝)
    hdu2509Be the Winner(反nim博弈)
  • 原文地址:https://www.cnblogs.com/EdsonLin/p/5716920.html
Copyright © 2011-2022 走看看