牛顿迭代
说白了就是给你一个(F(x)),你需要求出一个(G(x)),使得(F(G(x)) equiv 0 mod x^n)。
假设我们已经求出了(H(x))满足(F(H(x)) equiv 0 mod x^n),我们需要推出(F(G(x)) equiv 0 mod x^{2n})。我们可以在(H(x))处使用正无穷次拉格朗日中值定理,可以得到泰勒展开式:
[F(G(x)) equiv F(H(x))+frac{F'(H(x))(G(x)-H(x))}{1!}+frac{F''(H(x))(G(x)-H(x))^2}{2!}+... mod x^{2n}
]
由于对于任意的((G(x)-H(x))^q,q geq 2)都满足((G(x)-H(x))^q equiv 0 mod x^{2n})
所以有:
[F(G(x)) equiv F(H(x))+F'(H(x))(G(x)-H(x)) mod x^{2n}
]
因为需要(F(G(x)) equiv 0 mod x^{2n})
所以:
[F(H(x))+F'(H(x))(G(x)-H(x)) equiv 0 mod x^{2n}
]
简单化一下就是:
[G(x) equiv H(x)-frac{F(H(x))}{F'(H(x))} mod x^{2n}
]
这个东西可以用来计算多项式开方,多项式(exp)。
多项式(ln)
给你一个(A(x)),你需要求出一个(B(x) equiv ln A(x) mod x^n)。
两边同时求导,根据复合函数求导的链式法则,有:
[B'(x) equiv ln'(A(x))A'(x) equiv frac{A'(x)}{A(x)} mod x^n
]
注意这里(A(x))的常数项必须为(1),求出来的(B(x))常数项为(0)。
多项式(exp)
给你一个(A(x)),你需要求出一个(B(x) equiv e^{A(x)} mod x^n)。
题中的式子可以转化为(ln B(x) equiv A(x) mod x^n)
现在我们要求的东西相当于函数(F(B(x)) = A(x)-ln B(x))模(x^n)意义下的一个零点,代入牛顿迭代的式子里,有:
[B(x) equiv C(x)-frac{A(x)-ln C(x)}{-frac{1}{C(x)}} mod x^{2n}
]
[B(x) equiv C(x)(1+A(x)-ln C(x)) mod x^{2n}
]
注意这里(A(x))的常数项必须为(0),求出来的(B(x))常数项为(1)。
代码
应该只放一个多项式(exp)的代码就够了吧。
#include <bits/stdc++.h>
#define rin(i,a,b) for(register int i=(a);i<=(b);++i)
#define irin(i,a,b) for(register int i=(a);i>=(b);--i)
#define trav(i,a) for(register int i=head[a];i;i=e[i].nxt)
#define Size(a) (int)a.size()
#define pb push_back
typedef long long LL;
using std::cerr;
using std::endl;
inline int read(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
const int MAXN=100005;
const int MOD=998244353;
const int G=3,INVG=332748118;
int NTT,N,n,m,len,rev[MAXN<<2];
int w[1048576],iw[1048576],inv[MAXN];
int a[MAXN];
int A[MAXN<<2],B[MAXN<<2],C[MAXN<<2];
inline int qpow(int x,int y){
int ret=1,tt=x%MOD;
while(y){
if(y&1) ret=1ll*ret*tt%MOD;
tt=1ll*tt*tt%MOD;
y>>=1;
}
return ret;
}
void ntt(int *c,int dft){
rin(i,0,n-1) if(i<rev[i])
std::swap(c[i],c[rev[i]]);
for(register int mid=1;mid<n;mid<<=1){
int r=(mid<<1),u=NTT/r;
for(register int l=0;l<n;l+=r){
int v=0;
for(register int i=0;i<mid;++i,v+=u){
int x=c[l+i],y=1ll*c[l+mid+i]*(dft>0?w[v]:iw[v])%MOD;
c[l+i]=x+y<MOD?x+y:x+y-MOD;
c[l+mid+i]=x-y>=0?x-y:x-y+MOD;
}
}
}
if(dft<0){
int invn=qpow(n,MOD-2);
rin(i,0,n-1) c[i]=1ll*c[i]*invn%MOD;
}
}
void prepare(){
for(n=1,len=0;n<=m;n<<=1,++len);
rin(i,1,n-1) rev[i]=((rev[i>>1]>>1)|((i&1)<<(len-1)));
}
// 给B求导到A
void deriv(int idx){rin(i,0,idx-2)A[i]=1ll*B[i+1]*(i+1)%MOD;}
// 给A积分到A
void integ(int idx){irin(i,idx-1,1)A[i]=1ll*A[i-1]*inv[i]%MOD;}
// 给B求逆到C利用A
void inver(int idx){
if(idx==1){C[0]=qpow(B[0],MOD-2);return;}
inver((idx+1)/2);m=(idx-1)+((idx+1)/2-1)*2;prepare();
rin(i,0,idx-1)A[i]=B[i];
ntt(A,1);ntt(C,1);rin(i,0,n-1)C[i]=(2*C[i]-1ll*A[i]*C[i]%MOD*C[i]%MOD+MOD)%MOD;ntt(C,-1);
memset(A,0,n<<2);rin(i,idx,n-1)C[i]=0;
}
// 给B求ln到A利用C
void polyln(int idx){
inver(idx);deriv(idx);
m=(idx-2)+(idx-1);prepare();
ntt(A,1);ntt(C,1);rin(i,0,n-1)A[i]=1ll*A[i]*C[i]%MOD;ntt(A,-1);
integ(idx);A[0]=0;rin(i,idx,n-1)A[i]=0;memset(C,0,n<<2);
}
// 给a求exp到B利用A
void polyexp(int idx){
if(idx==1){B[0]=1;return;}
polyexp((idx+1)/2);polyln(idx);m=((idx+1)/2-1)+(idx-1);prepare();
rin(i,0,idx-1)A[i]=(a[i]-A[i]+MOD)%MOD;A[0]=(A[0]+1)%MOD;
ntt(A,1);ntt(B,1);rin(i,0,n-1)B[i]=1ll*A[i]*B[i]%MOD;ntt(B,-1);
memset(A,0,n<<2);rin(i,idx,n-1)B[i]=0;
}
void init(int N){
for(NTT=1;NTT<(N<<1);NTT<<=1);
int v=qpow(G,(MOD-1)/NTT),iv=qpow(INVG,(MOD-1)/NTT);w[0]=iw[0]=1;
rin(i,1,NTT-1) w[i]=1ll*w[i-1]*v%MOD,iw[i]=1ll*iw[i-1]*iv%MOD;
inv[1]=1;rin(i,2,N) inv[i]=(-1ll*(MOD/i)*inv[MOD%i]%MOD+MOD)%MOD;
}
int main(){
N=read();init(N);
rin(i,0,N-1) a[i]=read();
polyexp(N);
rin(i,0,N-1) printf("%d ",B[i]);putchar('
');
return 0;
}