1 sklearn模型的保存和加载API
- from sklearn.externals import joblib
- 保存:joblib.dump(estimator, 'test.pkl')
- 加载:estimator = joblib.load('test.pkl')
2 线性回归的模型保存加载案例
def load_dump_demo():
"""
模型保存和加载
:return:
"""
# 1.获取数据
data = load_boston()
# 2.数据集划分
x_train, x_test, y_train, y_test = train_test_split(data.data, data.target, random_state=22)
# 3.特征工程-标准化
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.fit_transform(x_test)
# 4.机器学习-线性回归(岭回归)
# # 4.1 模型训练
# estimator = Ridge(alpha=1)
# estimator.fit(x_train, y_train)
#
# # 4.2 模型保存
# joblib.dump(estimator, "./data/test.pkl")
# 4.3 模型加载
estimator = joblib.load("./data/test.pkl")
# 5.模型评估
# 5.1 获取系数等值
y_predict = estimator.predict(x_test)
print("预测值为:
", y_predict)
print("模型中的系数为:
", estimator.coef_)
print("模型中的偏置为:
", estimator.intercept_)
# 5.2 评价
# 均方误差
error = mean_squared_error(y_test, y_predict)
print("误差为:
", error)
3 小结
- sklearn.externals import joblib【知道】
- 保存:joblib.dump(estimator, 'test.pkl')
- 加载:estimator = joblib.load('test.pkl')
- 注意:
- 1.保存文件,后缀名是**.pkl
- 2.加载模型是需要通过一个变量进行承接