zoukankan      html  css  js  c++  java
  • 核范数求次梯度

    Start with the SVD decomposition of $x$:

    $$x=USigma V^T$$

    Then $$|x|_*=tr(sqrt{x^Tx})=tr(sqrt{(USigma V^T)^T(USigma V^T)})$$

    $$Rightarrow |x|_*=tr(sqrt{VSigma U^T USigma V^T})=tr(sqrt{VSigma^2V^T})$$

    By circularity of trace:

    $$Rightarrow |x|_*=tr(sqrt{V^TVSigma^2})=tr(sqrt{V^TVSigma^2})=tr(sqrt{Sigma^2})=tr(Sigma)$$

    Since the elements of $Sigma$ are non-negative.

    Therefore nuclear norm can be also defined as the sum of the absolute values of the singular value decomposition of the input matrix.

    Now, note that the absolute value function is not differentiable on every point in its domain, but you can find a subgradient.


    $$frac{partial |x|_*}{partial x}=frac{partial tr(Sigma)}{partial x}=frac{ tr(partialSigma)}{partial x}$$

    You should find $partialSigma$. Since $Sigma$ is diagonal, the subdifferential set of $Sigma$ is: $partialSigma=SigmaSigma^{-1}partialSigma$, now we have:

    $$frac{partial |x|_*}{partial x}=frac{ tr(SigmaSigma^{-1}partialSigma)}{partial x}$$ (I)

    So we should find $partialSigma$.

    $x=USigma V^T$, therefore:
    $$partial x=partial USigma V^T+UpartialSigma V^T+USigmapartial V^T$$

    Therefore:

    $$UpartialSigma V^T=partial x-partial USigma V^T-USigmapartial V^T$$

    $$Rightarrow U^TUpartialSigma V^TV=U^Tpartial xV-U^Tpartial USigma V^TV-U^TUSigmapartial V^TV$$


    $$Rightarrow partialSigma =U^Tpartial xV-U^Tpartial USigma - Sigmapartial V^TV$$

    egin{align}
    Rightarrow\
    tr(partialSigma) &=& tr(U^Tpartial xV-U^Tpartial USigma - Sigmapartial V^TV)\
    &=& tr(U^Tpartial xV)+tr(-U^Tpartial USigma - Sigmapartial V^TV)
    end{align}


    You can show that $tr(-U^Tpartial USigma - Sigmapartial V^TV)=0$ (Hint: diagonal and antisymmetric matrices, proof in the comments.), therefore:

    $$tr(partialSigma) = tr(U^Tpartial xV)$$

    By substitution into (I):

    $$frac{partial |x|_*}{partial x}= frac{ tr(partialSigma)}{partial x} =frac{ tr(U^Tpartial xV)}{partial x}=frac{ tr(VU^Tpartial x)}{partial x}=(VU^T)^T$$

    Therefore you can use $U V^T$ as the subgradient.

     参考:这里

  • 相关阅读:
    wxpython快速入门
    python核心编程 第四章 和第五章
    python核心编程 第三章
    python核心编程 第二章 快速入门
    Nginx 使用札记
    PHP 函数总结
    node.js安装部署
    linux
    在Linux上安装Git
    php超级全局变量
  • 原文地址:https://www.cnblogs.com/Eufisky/p/12820447.html
Copyright © 2011-2022 走看看