zoukankan      html  css  js  c++  java
  • Spark实战(五)spark streaming + flume(Python版)

    一、flume安装

    (一)概述

       Flume是一个分布式、可靠、和高可用的海量日志采集、聚合和传输的系统。Flume可以采集文件,socket数据包等各种形式源数据,又可以将采集到的数据输出到HDFS、hbase、hive、kafka等众多外部存储系统中,一般的采集需求,通过对flume的简单配置即可实现,Flume针对特殊场景也具备良好的自定义扩展能力,因此flume可以适用于大部分的日常数据采集场景

    (二)运行机制

       1、 Flume分布式系统中最核心的角色是agent,flume采集系统就是由一个个agent所连接起来形成

       2、 每一个agent相当于一个数据传递员,内部有三个组件:

    a)	Source:采集源,用于跟数据源对接,以获取数据
    b)	Sink:下沉地,采集数据的传送目的,用于往下一级agent传递数据或者往最终存储系统传递数据
    c)	Channel:angent内部的数据传输通道,用于从source将数据传递到sink
    
    • 1
    • 2
    • 3

    在这里插入图片描述

    (三)Flume采集系统结构图

    1、简单结构

       单个agent采集数据

    在这里插入图片描述

    2、复杂结构

       多级agent之间串联
    在这里插入图片描述

    (四)Flume的安装部署

       1、去apache官网上下载安装包,并解压tar -zxvf apache-flume-1.8.0-bin,并修改conf目录下flume-env.sh,在里面配置JAVA_HOME

       2、根据数据采集的需求配置采集方案,描述在配置文件中(文件名可任意自定义)
       3、指定采集方案配置文件,在相应的节点上启动flume agent

    二、flume push方式

    1、spark streaming程序

       首先是flume通过push方式将采集到的数据传递到spark程序上,这种方式基本不用。spark代码如下:

    import pyspark
    from pyspark.sql import SparkSession
    from pyspark.streaming import StreamingContext
    from pyspark.streaming.flume import FlumeUtils
    
    if __name__ == "__main__":
        spark = SparkSession
                .builder
                .appName("PythonWordCount") 
                .master("local[2]") 
                .getOrCreate()
        sc = spark.sparkContext
        ssc = StreamingContext(sc, 5)
        # hostname = sys.argv[1]
        # port = int(sys.argv[2])
        flumeStream = FlumeUtils.createStream(ssc, "localhost", 8888, pyspark.StorageLevel.MEMORY_AND_DISK_SER_2)
        line = flumeStream.map(lambda x: x[1])
        words = line.flatMap(lambda x: x.split(" "))
        datas = words.map(lambda x: (x, 1))
        result = datas.reduceByKey(lambda agg, obj: agg + obj)
        result.pprint()
        ssc.start()
        ssc.awaitTermination()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23

       注意:要指定并行度,如在本地运行设置setMaster(“local[2]”),相当于启动两个线程,一个给receiver,一个给computer。否则会出现如下问题

    2019-01-09 19:36:16 INFO  ReceiverSupervisorImpl:54 - Called receiver 0 onStart
    2019-01-09 19:36:16 INFO  ReceiverSupervisorImpl:54 - Waiting for receiver to be stopped
    2019-01-09 19:36:20 INFO  JobScheduler:54 - Added jobs for time 1547033780000 ms
    2019-01-09 19:36:25 INFO  JobScheduler:54 - Added jobs for time 1547033785000 ms
    2019-01-09 19:36:30 INFO  JobScheduler:54 - Added jobs for time 1547033790000 ms
    2019-01-09 19:36:35 INFO  JobScheduler:54 - Added jobs for time 1547033795000 ms
    2019-01-09 19:36:40 INFO  JobScheduler:54 - Added jobs for time 1547033800000 ms
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7

       如果是在集群中运行,必须要求集群中可用core数大于1

    2、flume conf文件

    <font size=4>&emsp; &emsp;在flume的conf目录下新建flume-push.conf内容如下</font></br>
    # Name the components on this agent
    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1
    
    # source
    a1.sources.r1.type = spooldir
    a1.sources.r1.spoolDir = /home/hadoop/log/flume
    a1.sources.r1.fileHeader = true
    
    # Describe the sink
    a1.sinks.k1.type = avro
    #这是接收方
    a1.sinks.k1.hostname = 192.168.62.131
    a1.sinks.k1.port = 8888
    
    # Use a channel which buffers events in memory
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25

       需要先将spark程序运行,使用以下命令:

    spark/bin/spark-submit  --driver-class-path /home/hadoop/spark/jars/*:/home/hadoop/jar/flume/* /tmp/pycharm_project_563/day5/FlumePushWordCount.py
    
    • 1

       可能会出现以下问题

    	Spark Streaming's Flume libraries not found in class path. Try one of the following.
    
      1. Include the Flume library and its dependencies with in the
         spark-submit command as
    
         $ bin/spark-submit --packages org.apache.spark:spark-streaming-flume:2.4.0 ...
    
      2. Download the JAR of the artifact from Maven Central http://search.maven.org/,
         Group Id = org.apache.spark, Artifact Id = spark-streaming-flume-assembly, Version = 2.4.0.
         Then, include the jar in the spark-submit command as
    
         $ bin/spark-submit --jars <spark-streaming-flume-assembly.jar> ...
    Traceback (most recent call last):
      File "/tmp/pycharm_project_563/day5/FlumePushWordCount.py", line 12, in <module>
        flumeStream = FlumeUtils.createStream(ssc, "192.168.62.131", "8888")
      File "/home/hadoop/spark/python/pyspark/streaming/flume.py", line 67, in createStream
        helper = FlumeUtils._get_helper(ssc._sc)
      File "/home/hadoop/spark/python/pyspark/streaming/flume.py", line 130, in _get_helper
        return sc._jvm.org.apache.spark.streaming.flume.FlumeUtilsPythonHelper()
    TypeError: 'JavaPackage' object is not callable
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20

       需要去maven仓库下载spark-streaming-flume-assembly.jar,然后放到上面指定的jar目录中去。

       然后运行flume

    bin/flume-ng agent -n a1 -c conf/ -f conf/flume-push.conf -Dflume.root.logger=WARN,console
    
    • 1

       然后在/home/hadoop/log/flume目录下新建log文件,运行spark的日志中出现如下:

    在这里插入图片描述

    三、poll方式

    1、spark streaming程序

       这种方式是有spark主动去flume拉取数据,代码如下:

    from pyspark.sql import SparkSession
    from pyspark.streaming import StreamingContext
    from pyspark.streaming.flume import FlumeUtils
    
    
    if __name__ == "__main__":
        spark = SparkSession
                .builder
                .appName("PythonWordCount") 
                .master("local[2]") 
                .getOrCreate()
        sc = spark.sparkContext
        ssc = StreamingContext(sc, 5)
        addresses = [("localhost", 8888)]
        flumeStream = FlumeUtils.createPollingStream(ssc, addresses)
        line = flumeStream.map(lambda x: x[1])
        words = line.flatMap(lambda x: x.split(" "))
        datas = words.map(lambda x: (x, 1))
        result = datas.reduceByKey(lambda agg, obj: agg + obj)
    
        result.pprint()
        ssc.start()
        ssc.awaitTermination()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23

       如果是本地模式同样需要指定并行度,如果是在集群中运行,必须要求集群中可用core数大于1

    2、flume conf文件

       在flume的conf目录下新建flume-poll.conf内容如下:

    # Name the components on this agent
    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1
    # source
    a1.sources.r1.type = spooldir
    a1.sources.r1.spoolDir = /home/hadoop/log/flume
    a1.sources.r1.fileHeader = true
    
    # Describe the sink
    a1.sinks.k1.type = org.apache.spark.streaming.flume.sink.SparkSink
    a1.sinks.k1.hostname = localhost
    a1.sinks.k1.port = 8888
    
    # Use a channel which buffers events in memory
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22

       由于是poll方式,需要的flume

    bin/flume-ng agent -n a1 -c conf/ -f conf/flume-poll.conf -Dflume.root.logger=WARN,console
    
    • 1

       启动spark程序

    spark/bin/spark-submit  --driver-class-path /home/hadoop/spark/jars/*:/home/hadoop/jar/flume/* /tmp/pycharm_project_563/day5/FlumePollWordCount.py 
    
    • 1

       同样在/home/hadoop/log/flume目录下新建log文件,将原先生成的COMPLETED文件删除,rm flume/aaa.txt.COMPLETED ,运行spark的日志中出现如下:

    在这里插入图片描述

  • 相关阅读:
    PostgreSQL 的 pl/pgsql 的 cannot begin/end transactions in PL/pgSQL错误
    PostgreSQL在何处处理 sql查询之五十三
    PostgreSQL在何处处理 sql查询之五十四
    PostgreSQL的CTE
    PostgreSQL在何处处理 sql查询之五十二
    PostgreSQL 语法树分析之前需要了解到知识
    PostgreSQL在何处处理 sql查询之五十一
    PostgreSQL在何处处理 sql查询之五十六
    PostgreSQL在何处处理 sql查询之五十五
    PostgreSQL在何处处理 sql查询之五十七
  • 原文地址:https://www.cnblogs.com/ExMan/p/14318567.html
Copyright © 2011-2022 走看看