zoukankan      html  css  js  c++  java
  • POJ 3641 Pseudoprime numbers (miller-rabin 素数判定)

    模板题,直接用

    /********************* Template ************************/
    #include <set>
    #include <map>
    #include <list>
    #include <cmath>
    #include <ctime>
    #include <deque>
    #include <queue>
    #include <stack>
    #include <bitset>
    #include <cstdio>
    #include <string>
    #include <vector>
    #include <cassert>
    #include <cstdlib>
    #include <cassert>
    #include <cstring>
    #include <sstream>
    #include <fstream>
    #include <numeric>
    #include <iomanip>
    #include <iostream>
    #include <algorithm>
    #include <functional>
    using namespace std;
    #define EPS             1e-8
    #define DINF            1e15
    #define MAXN            100050
    #define MOD             1000000007
    #define INF             0x7fffffff
    #define LINF            1LL<<60
    #define PI              3.14159265358979323846
    #define lson            l,m,rt<<1
    #define rson            m+1,r,rt<<1|1
    #define BUG             cout<<"BUG! "<<endl
    #define ABS(a)          ((a)>0?(a):(-a))
    #define LINE            cout<<"------------------ "<<endl
    #define FIN             freopen("in.txt","r",stdin)
    #define FOUT            freopen("in.txt","w",stdout)
    #define mem(a,b)        memset(a,b,sizeof(a))
    #define FOR(i,a,b)      for(int i = a ; i < b ; i++)
    #define read(a)         scanf("%d",&a)
    #define read2(a,b)      scanf("%d%d",&a,&b)
    #define read3(a,b,c)    scanf("%d%d%d",&a,&b,&c)
    #define write(a)        printf("%d
    ",a)
    #define write2(a,b)     printf("%d %d
    ",a,b)
    #define write3(a,b,c)   printf("%d %d %d
    ",a,b,c)
    #pragma comment         (linker,"/STACK:102400000,102400000")
    template<class T> inline T L(T a)               {return (a << 1);}
    template<class T> inline T R(T a)               {return (a << 1 | 1);}
    template<class T> inline T lowbit(T a)          {return (a & -a);}
    template<class T> inline T Mid(T a,T b)         {return ((a + b) >> 1);}
    template<class T> inline T gcd(T a,T b)         {return b ? gcd(b,a%b) : a;}
    template<class T> inline T lcm(T a,T b)         {return a / gcd(a,b) * b;}
    template<class T> inline T Min(T a,T b)         {return a < b ? a : b;}
    template<class T> inline T Max(T a,T b)         {return a > b ? a : b;}
    template<class T> inline T Min(T a,T b,T c)     {return min(min(a,b),c);}
    template<class T> inline T Max(T a,T b,T c)     {return max(max(a,b),c);}
    template<class T> inline T Min(T a,T b,T c,T d) {return min(min(a,b),min(c,d));}
    template<class T> inline T Max(T a,T b,T c,T d) {return max(max(a,b),max(c,d));}
    template<class T> inline T mod(T x,T y)         {y = ABS(y); return x >= 0 ? x % y : x % y + y;}
    template<class T> inline T mul_mod(T a,T b,T n) {
        T ret = 0,tmp = a % n;
        while(b){
            if((b&1) && (ret+=tmp)>=n) ret -= n;
            if((b>>=1) && (tmp<<=1)>=n) tmp -= n;
        }return ret;
    }
    template<class T> inline T pow_mod(T a,T b,T n){
        T ret = 1; a = a % n;
        while(b){
            if (b&1) ret = mul_mod(ret,a,n);
            if (b>>=1) a = mul_mod(a,a,n);
        }return ret;
    }
    template<class T> inline T exGCD(T a, T b, T &x, T &y){
        if(!b) return x = 1,y = 0,a;
        T res = exGCD(b,a%b,x,y),tmp = x;
        x = y,y = tmp - (a / b) * y;
        return res;
    }
    template<class T> inline T reverse_bits(T x){
        x = (x >> 1 & 0x55555555) | ((x << 1) & 0xaaaaaaaa); x = ((x >> 2) & 0x33333333) | ((x << 2) & 0xcccccccc);
        x = (x >> 4 & 0x0f0f0f0f) | ((x << 4) & 0xf0f0f0f0); x = ((x >> 8) & 0x00ff00ff) | ((x << 8) & 0xff00ff00);
        x = (x >>16 & 0x0000ffff) | ((x <<16) & 0xffff0000); return x;
    }
    
    typedef long long LL;    typedef unsigned long long ULL;
    //typedef __int64 LL;      typedef unsigned __int64 ULL;
    /*********************   By  F   *********************/
    inline bool witness(LL a,LL x){
        LL m = x-1,s = 0;
        while(!(m&1)) m>>=1,s++;
        LL res = pow_mod(a,m,x);
        if(res == 1 || res == x-1) return 1;
        while(s--){
            res = mul_mod(res,res,x);
            if(res == x-1) return 1;
        }return 0;
    }
    inline bool miller(LL x,int time){
        if(x == 2 || x == 3 || x == 5 || x == 7) return 1;
        if(x == 1 || !(x&1) || x%3 == 0 || x%5 == 0 || x%7 == 0) return 0;
        while(time--){
            LL r = rand()%(x-2) + 2;
            if(gcd(r,x) != 1 || !witness(r%x,x)) {return 0;}
        }return 1;
    }
    int main(){
        //FIN;
        LL p,a;
        while(~scanf("%lld%lld",&p,&a)){
            if(p == 0 && a == 0) break;
            if(miller(p,50)){
                printf("no
    ");
            }else{
                LL t = pow_mod(a,p,p);
                if(t == a) printf("yes
    ");
                else printf("no
    ");
            }
        }
        return 0;
    }
  • 相关阅读:
    对字符串做预处理 、 工具类
    判断对象是否为空 、 工具类
    判断集合是否为空 、 工具类
    jquery取值
    时间年月日格式化
    图片上传
    验证码解决方案
    PHP高效率写法
    关于ip判断
    composer(管理依赖关系的工具) 及配置信息
  • 原文地址:https://www.cnblogs.com/Felix-F/p/3421615.html
Copyright © 2011-2022 走看看