zoukankan      html  css  js  c++  java
  • Python实现RNN

    一般的前馈神经网络中, 输出的结果只与当前输入有关与历史状态无关, 而递归神经网络(Recurrent Neural Network, RNN)神经元的历史输出参与下一次预测.

    本文中我们将尝试使用RNN处理二进制加法问题: 两个加数作为两个序列输入, 从右向左处理加数序列.和的某一位不仅与加数的当前位有关, 还与上一位的进位有关.

    词语的含义与上下文有关, 未来的状态不仅与当前相关还与历史状态相关. 因为这种性质, RNN非常适合自然语言处理和时间序列分析等任务.


    RNN与前馈神经网络最大的不同在于多了一条反馈回路, 将RNN展开即可得到前馈神经网络.

    RNN同样采用BP算法进行训练, 误差反向传播时需要逆向通过反馈回路.

    定义输出层误差为:

    [E_j= sigmod'(O_j)*(T_j-O_j) =O_j(1-O_j)(T_j-O_j) ]

    其中, (O_j)是预测输出, (T_j)是参考输出.

    因为隐含层没有参考输出, 采用下一层的误差加权和代替(T_j - O_j). 对于隐含层神经元而言这里的下一层可能是输出层, 也可能是其自身.

    更多关于BP算法的内容可以参考BP神经网络与Python实现

    定义RNN结构

    完整的代码可以在rnn.py找到.

    因为篇幅原因, 相关工具函数请在完整源码中查看, 文中不再赘述.

    这里我们定义一个简单的3层递归神经网络, 隐含层神经元的输出只与当前状态以及上一个状态有关.

    定义RNN类:

    class RNN:
        def __init__(self):
            self.input_n = 0
            self.hidden_n = 0
            self.output_n = 0
            self.input_weights = []  # (input, hidden)
            self.output_weights = []  # (hidden, output)
            self.hidden_weights = []  # (hidden, hidden)
    
        def setup(self, ni, nh, no):
            self.input_n = ni
            self.hidden_n = nh
            self.output_n = no
            self.input_weights = make_rand_mat(self.input_n, self.hidden_n)
            self.output_weights = make_rand_mat(self.hidden_n, self.output_n)
            self.hidden_weights = make_rand_mat(self.hidden_n, self.hidden_n)
    

    这里定义了几个比较重要的矩阵:

    • input_weights: 输入层和隐含层之间的连接权值矩阵.

    • output_weights: 隐含层和输出层之间的连接权值矩阵

    • hidden_weights: 隐含层反馈回路权值矩阵, 反馈回路从一个隐含层神经元出发到另一个隐含层神经元.

    因为本文的RNN只有一阶反馈, 因此只需要一个反馈回路权值矩阵.对于n阶RNN来说需要n个反馈权值矩阵.

    定义test()方法作为示例代码的入口:

    def test(self):
        self.setup(2, 16, 1)
        for i in range(20000):
            a_int = int(rand(0, 127))
            a = int_to_bin(a_int, dim=8)
            a = np.array([int(t) for t in a])
    
            b_int = int(rand(0, 127))
            b = int_to_bin(b_int, dim=8)
            b = np.array([int(t) for t in b])
    
            c_int = a_int + b_int
            c = int_to_bin(c_int, dim=8)
            c = np.array([int(t) for t in c])
    
            guess, error = self.do_train([a, b], c, dim=8)
    
            if i % 1000 == 0:
                print("Predict:" + str(guess))
                print("True:" + str(c))
    			print("Error:" + str(error))
    			
                out = 0
                for index, x in enumerate(reversed(guess)):
                    out += x * pow(2, index)
                print str(a_int) + " + " + str(b_int) + " = " + str(out)
    
                result = str(self.predict([a, b], dim=8))
                print(result)
    
                print "==============="
    

    do_train方法仅进行一次训练, 这里我们生成了20000组训练数据每组数据仅执行一次训练.

    predict方法

    predict方法执行一次前馈过程, 以给出预测输出序列.

    def predict(self, case, dim=0):
        guess = np.zeros(dim)
        hidden_layer_history = [np.zeros(self.hidden_n)]
    
        for i in range(dim):
            x = np.array([[c[dim - i - 1] for c in case]])
    
            hidden_layer = sigmoid(np.dot(x, self.input_weights) + np.dot(hidden_layer_history[-1], self.hidden_weights))
            output_layer = sigmoid(np.dot(hidden_layer, self.output_weights))
            guess[dim - i - 1] = np.round(output_layer[0][0])  # if you don't like int, change it
    
            hidden_layer_history.append(copy.deepcopy(hidden_layer))
    

    初始化guess向量作为预测输出, hidden_layer_history列表保存隐含层的历史值用于计算反馈的影响.

    自右向左遍历序列, 对每个元素进行一次前馈.

    hidden_layer = sigmoid(np.dot(x, self.input_weights) + np.dot(hidden_layer_history[-1], self.hidden_weights))
    

    上面这行代码是前馈的核心, 隐含层的输入由两部分组成:

    • 来自输入层的输入np.dot(x, self.input_weights).

    • 来自上一个状态的反馈np.dot(hidden_layer_history[-1], self.hidden_weights).

    output_layer = sigmoid(np.dot(hidden_layer, self.output_weights))
    guess[dim - position - 1] = np.round(output_layer[0][0])
    

    上面这行代码执行输出层的计算, 因为二进制加法的原因这里对输出结果进行了取整.

    train方法

    定义train方法来控制迭代过程:

    def train(self, cases, labels, dim=0, learn=0.1, limit=1000):
        for i in range(limit):
            for j in range(len(cases)):
                case = cases[j]
                label = labels[j]
                self.do_train(case, label, dim=dim, learn=learn)
    

    do_train方法实现了具体的训练逻辑:

    def do_train(self, case, label, dim=0, learn=0.1):
        input_updates = np.zeros_like(self.input_weights)
        output_updates = np.zeros_like(self.output_weights)
        hidden_updates = np.zeros_like(self.hidden_weights)
    
        guess = np.zeros_like(label)
        error = 0
    
        output_deltas = []
        hidden_layer_history = [np.zeros(self.hidden_n)]
    
        for i in range(dim):
            x = np.array([[c[dim - i - 1] for c in case]])
            y = np.array([[label[dim - i - 1]]]).T
    
            hidden_layer = sigmoid(np.dot(x, self.input_weights) + np.dot(hidden_layer_history[-1], self.hidden_weights))
            output_layer = sigmoid(np.dot(hidden_layer, self.output_weights))
    
            output_error = y - output_layer
            output_deltas.append(output_error * sigmoid_derivative(output_layer))
            error += np.abs(output_error[0])
    
            guess[dim - i - 1] = np.round(output_layer[0][0])
    
            hidden_layer_history.append(copy.deepcopy(hidden_layer))
    
        future_hidden_layer_delta = np.zeros(self.hidden_n)
        for i in range(dim):
            x = np.array([[c[i] for c in case]])
            hidden_layer = hidden_layer_history[-i - 1]
            prev_hidden_layer = hidden_layer_history[-i - 2]
    
            output_delta = output_deltas[-i - 1]
            hidden_delta = (future_hidden_layer_delta.dot(self.hidden_weights.T) +
                            output_delta.dot(self.output_weights.T)) * sigmoid_derivative(hidden_layer)
    
            output_updates += np.atleast_2d(hidden_layer).T.dot(output_delta)
            hidden_updates += np.atleast_2d(prev_hidden_layer).T.dot(hidden_delta)
            input_updates += x.T.dot(hidden_delta)
    
            future_hidden_layer_delta = hidden_delta
    
        self.input_weights += input_updates * learn
        self.output_weights += output_updates * learn
        self.hidden_weights += hidden_updates * learn
    
        return guess, error
    

    训练逻辑中两次遍历序列, 第一次遍历执行前馈过程并计算输出层误差.

    第二次遍历计算隐含层误差, 下列代码是计算隐含层误差的核心:

    hidden_delta = (future_hidden_layer_delta.dot(self.hidden_weights.T) +
                            output_delta.dot(self.output_weights.T)) * sigmoid_derivative(hidden_layer)
    

    因为隐含层在前馈过程中参与了两次, 所以会有两层神经元反向传播误差:

    • 输出层传递的误差加权和output_delta.dot(self.output_weights.T)
    • 反馈回路中下一层隐含神经元传递的误差加权和future_hidden_layer_delta.dot(self.hidden_weights.T)

    将两部分误差求和然后乘自身输出的sigmoid导数sigmoid_derivative(hidden_layer)即为隐含层误差, 这里与普通前馈网络中的BP算法是一致的.

    测试结果

    执行test()方法可以看到测试结果:

    Predict:[1 0 0 0 1 0 1 0]
    True:[1 0 0 0 1 0 1 0]
    123 + 15 = 138
    ===============
    Error:[ 0.22207356]
    Predict:[1 0 0 0 1 1 1 1]
    True:[1 0 0 0 1 1 1 1]
    72 + 71 = 143
    ===============
    Error:[ 0.3532948]
    Predict:[1 1 0 1 0 1 0 0]
    True:[1 1 0 1 0 1 0 0]
    118 + 94 = 212
    ===============
    Error:[ 0.35634191]
    Predict:[0 1 0 0 0 0 0 0]
    True:[0 1 0 0 0 0 0 0]
    41 + 23 = 64
    

    预测精度还是很令人满意的.

  • 相关阅读:
    Unity错误-(Android build error) Can not sign application Unable to sign application; please provide passwords!
    C#WCF中传输List对象
    抓包工具Omnipeek,Wireshark
    Ubuntu18+.netcore+Nginx+Supervisor部署ASP.NET项目
    3D成像技术
    3D显示技术
    学习模电与数电
    【Java123】解决PKIX path building failed / unable to find valid certification path to requested target
    【Python123】Introduction
    【WebConsole123】练习案例之浏览器访问服务器shell
  • 原文地址:https://www.cnblogs.com/Finley/p/6845325.html
Copyright © 2011-2022 走看看