zoukankan      html  css  js  c++  java
  • luogu P3358 最长k可重区间集问题

    网络流建图好难,这题居然是网络流(雾,一般分析来说,有限制的情况最大流情况可以拆点通过capacity来限制,比如只使用一次,把一个点拆成入点出点,capacity为1即可,这题是限制最大k重复,可以联想到最大流问题,设源点汇点,限制的k就是其最大的capacity,其最大流一定<=k,跑出来一定满足条件,但如何计算长度呢,就使用费用流吧,最大费用流就把边权取反即可,我们不知道输入的数据范围,只知道个数,就离散化一下,每个区间只能选一次,就对离散化后的l对r连一条capacity为1,权为-len的边,源点对1连一条capacity为k的边,n对汇点连一条capacity为k的边,因为判断是否重复是从头到尾,那么源点汇点就分别连接头尾,但是这样连图不一定保证每个点都考虑进去了,可能会出现图不连通的情况,题目是开区间,那么(i,i+1)和(i+1,i+2)一定是没有交点的,就对i与i+1连一条capacity为无穷,权为0的边,这样就能保证图连通且不会影响到答案,因为如果有断层,其会顺着往下搜索,权为0,capacity为无穷,对答案无影响

    #include<bits/stdc++.h>
    using namespace std;
    #define lowbit(x) ((x)&(-x))
    typedef long long LL;
    
    const int maxm = 5e3+5;
    const int INF = 0x3f3f3f3f;
    
    struct edge{
        int u, v, cap, flow, cost, nex;
    } edges[maxm];
    
    struct Points{
        int l, r, len;
    } point[505];
    
    int head[maxm], cur[maxm], cnt, fa[1024], d[1024], n, allx[1024];
    bool inq[1024];
    
    void init() {
        memset(head, -1, sizeof(head));
    }
    
    void add(int u, int v, int cap, int cost) {
        edges[cnt] = edge{u, v, cap, 0, cost, head[u]};
        head[u] = cnt++;
    }
    
    void addedge(int u, int v, int cap, int cost) {
        add(u, v, cap, cost), add(v, u, 0, -cost);
    }
    
    bool spfa(int s, int t, int &flow, LL &cost) {
        for(int i = 0; i <= ((n<<1)|1); ++i) d[i] = INF; //init()
        memset(inq, false, sizeof(inq));
        d[s] = 0, inq[s] = true;
        fa[s] = -1, cur[s] = INF;
        queue<int> q;
        q.push(s);
        while(!q.empty()) {
            int u = q.front();
            q.pop();
            inq[u] = false;
            for(int i = head[u]; i != -1; i = edges[i].nex) {
                edge& now = edges[i];
                int v = now.v;
                if(now.cap > now.flow && d[v] > d[u] + now.cost) {
                    d[v] = d[u] + now.cost;
                    fa[v] = i;
                    cur[v] = min(cur[u], now.cap - now.flow);
                    if(!inq[v]) {q.push(v); inq[v] = true;}
                }
            }
        }
        if(d[t] == INF) return false;
        flow += cur[t];
        cost += 1LL*d[t]*cur[t];
        for(int u = t; u != s; u = edges[fa[u]].u) {
            edges[fa[u]].flow += cur[t];
            edges[fa[u]^1].flow -= cur[t];
        }
        return true;
    }
    
    int MincostMaxflow(int s, int t, LL &cost) {
        cost = 0;
        int flow = 0;
        while(spfa(s, t, flow, cost));
        return flow;
    }
    
    void run_case() {
        init();
        int l, r, k, xcnt = 0;
        cin >> n >> k;
        for(int i = 1; i <= n; ++i) {
            cin >> l >> r;
            allx[++xcnt] = l, allx[++xcnt] = r, point[i] = Points{l, r, r-l};
        }
        sort(allx+1,allx+1+xcnt);
        int len = unique(allx+1,allx+1+xcnt)-allx;
        for(int i = 1; i <= n; ++i) {
            point[i].l = lower_bound(allx+1,allx+len,point[i].l)-allx;
            point[i].r = lower_bound(allx+1,allx+len,point[i].r)-allx;
        }
        for(int i = 1; i < len-1; ++i)
            addedge(i, i+1, INF, 0);
        int s = 0, t = len;
        for(int i = 1; i <= n; ++i) {
            addedge(point[i].l, point[i].r, 1, -point[i].len);
        }
        addedge(s, 1, k, 0), addedge(len-1, t, k, 0);
        LL cost = 0;
        MincostMaxflow(s, t, cost);
        cout << -cost;
    }
    
    int main() {
        ios::sync_with_stdio(false), cin.tie(0);
        run_case();
        cout.flush();
        return 0;
    }
    View Code
  • 相关阅读:
    使用offerShow小程序查询程序员薪水
    StoryBoard中使用segue传值
    在Xcode11中添加launchImage
    OC之打乱对象数组
    HDU Today
    洛谷:P1048 采药
    洛谷:P1928 外星密码
    洛谷:P1757 通天之分组背包
    洛谷:P1115 最大子段和
    洛谷:P1104 生日
  • 原文地址:https://www.cnblogs.com/GRedComeT/p/12287171.html
Copyright © 2011-2022 走看看