梦回高中,定义的f(i,j)为从(0,0)到(i,j)一共有多少条路可以选择,易知我们要做i+j次选择,其中有i次是选择x轴,剩下的是y轴,所以f(i,j)=C(i+j,i)=C(i+j,j),给你一个范围[r1,r2],[c1,c2],求出所有的f(i,j)之和,我们可以用容斥,设g(r,c)为范围[0,r][0,c]的f之和,那么答案就是g(r2,c2)-g(r2,c1-1)-g(r1-1,c2)+g(r1-1,c1-1),目标就转换为快速求g,由组合数公式,g(r,c)就可以从r*c个f和变成r个f和,g(r,c) = f(0,0)+f(0,1)+~~~+f(0,c)+~~~+f(r,0)+f(r,1)+~~~+f(r,c),f(0,0)+f(0,1)+~~~+f(0,c)=f(1,c)=C(c+1,c), f(r,0)+f(r,1)+~~~+f(r,c)=f(r+1,c)=C(c+1+r,c) 这样复杂度就是O(n),预处理后每个组合数是O(1)
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
#include<bits/stdc++.h> using namespace std; #define lowbit(x) ((x)&(-x)) typedef long long LL; const int MOD = 1e9+7; const int maxm = 2e6+5; LL F[maxm], Finv[maxm], inv[maxm]; LL comb(int n, int m) { //C(n, m) if(m < 0 || m > n) return 0; return F[n]*Finv[n-m]%MOD*Finv[m]%MOD; } void run_case() { int r1, c1, r2, c2, n; cin >> r1 >> c1 >> r2 >> c2; n = c2+r2+2; inv[1] = 1; for(int i = 2; i <= n; ++i) inv[i] = (MOD - MOD / i) * 1LL * inv[MOD % i] % MOD; F[0] = Finv[0] = 1; for(int i = 1; i <= n; ++i) { F[i] = F[i-1] *1LL* i % MOD; Finv[i] = Finv[i-1] * 1LL * inv[i] % MOD; } LL ans1=0,ans2=0,ans3=0,ans4=0; for(int i = 0; i <= r2; ++i) (ans1+=comb(c2+1+i,c2))%=MOD; for(int i = 0; i <= r2; ++i) (ans2+=comb(c1+i,c1-1))%=MOD; for(int i = 0; i <= r1-1; ++i) (ans3+=comb(c2+1+i,c2))%=MOD; for(int i = 0; i <= r1-1; ++i) (ans4+=comb(c1+i,c1-1))%=MOD; cout << (ans1+ans4-ans2-ans3+MOD)%MOD; } int main() { ios::sync_with_stdio(false), cin.tie(0); //cout.setf(ios_base::showpoint);cout.precision(8); run_case(); cout.flush(); return 0; }