zoukankan      html  css  js  c++  java
  • 【DP】【Asia Harbin 2010/2011】【Permutation Counting】

    【题目描述】Given a permutation a1, a2,...aN of {1, 2,..., N}, we define its E-value as the amount of elements where ai > i. For example, the E-value of  permutation {1, 3, 2, 4} is 1, while the E-value of {4, 3, 2, 1} is 2.  You are requested to find how many permutations of {1, 2,..., N} whose E-value  is exactly k.

    Input

    There are several test cases, and one line for each case, which contains two integers, N and k. (1$ \le$N$ \le$1000, 0$ \le$k$ \le$N).

     

    Output

    Output one line for each case. For the answer may be quite huge, you need to output the  answer module 1,000,000,007.

    Explanation for the sample:

    There is only one permutation with E-value 0: {1, 2, 3}, and there are four permutations  with E-value 1: {1, 3, 2}, {2, 1, 3}, {3, 1, 2}, {3, 2, 1}

     

    Sample Input

    3 0 
    3 1
    

    Sample Output

    1 
    4
    
    【个人体会】一开始在YY能不能找到规律直接能算出答案,然后还打了一个暴力算出了10以内的情况,
    后来发现找不出来,于是才回归正道。联想到全错位排列的递推方式,立马懂了这题其实就是个DP。

    【题目解析】假设我已经求出了N-1个数,其中ai>i为K个的总方案数。那么考虑添加N这个元素进去
    ,现在N正好放在第N位上面,那么此时是的排列正好属于DP[N][K],然后将这个元素和之前的ai>i的
    元素进行交换,一共是K种交换,得到的方案数都是属于DP[N][K],因此DP[N][K]+=DP[N-1][K]*(K+1),
    另外一种是将元素N和ai<=i的元素进行交换,这样的话就会多出1个ai>i的元素(即N这个元素)。因此
    DP[N][K]+=DP[N-1][K-1]*(N-1-(K-1))

    【代码如下】

     1 #include <iostream>
     2 
     3 using namespace std;
     4 
     5 typedef long long int64;
     6 
     7 const int64 mod = 1000000007;
     8 
     9 int64 F[1001][1001], N, K;
    10 
    11 int64 Dp(int64 n, int64 k)
    12 {
    13     if (F[n][k]) return F[n][k];
    14     if (n == 0 || n == k) return 0;
    15     if (k == 0) return 1;
    16     int64 t1 = Dp(n - 1, k) * (k + 1) % mod, t2 = Dp(n - 1, k - 1) * (n - k) % mod;
    17     int64 tmp = (t1 + t2) % mod;
    18     F[n][k] = tmp;
    19     return tmp;
    20 }
    21 
    22 int main()
    23 {
    24     while (cin >> N >> K) cout << Dp(N, K) << endl;
    25     return 0;
    26 }
    
    
    
    
    
  • 相关阅读:
    Java 判断日期的方法
    HTTP Session例子
    Unity3D性能优化
    TCP学习之二:客户端与服务端的连接
    TCP学习之一:TCP网络编程概念
    TCP学习之三:客户端、服务端同步传输字符串
    TCP学习之四:传输协议
    Lua与.net的CLR相互调用
    HTC vive开发:关于手柄按键
    JavaSESocket编程之简易聊天系统
  • 原文地址:https://www.cnblogs.com/GXZC/p/2840498.html
Copyright © 2011-2022 走看看