参考资料:
Kitti 的 calib_cam_to_cam.txt,calib_imu_to_velo.txt,calib_velo_to_cam.txt
点云到图像平面的投影
https://blog.csdn.net/qq_33801763/article/details/78959205
matlab pointcloud类文档
http://www.mathworks.com/help/vision/ref/pointcloud-class.html
激光相机数据融合
https://www.cnblogs.com/zoucheng/p/7860827.html
clear;close all; dbstop error; clc; % matlab中符号为'/',与 Windows相反 base_dir = '.../point_cloud_projection'; % 图片目录 calib_dir = '.../point_cloud_projection'; % 相机参数目录 cam = 2; % 第3个摄像头 frame = 5; % 第0帧(第一张图片) calib = loadCalibrationCamToCam(fullfile(calib_dir,'calib_cam_to_cam.txt')); Tr_velo_to_cam = loadCalibrationRigid(fullfile(calib_dir,'calib_velo_to_cam.txt')); % 计算点云到图像平面的投影矩阵 R_cam_to_rect = eye(4); R_cam_to_rect(1:3,1:3) = calib.R_rect{1}; % R_rect:纠正旋转使图像平面共面 P_velo_to_img = calib.P_rect{cam+1}*R_cam_to_rect*Tr_velo_to_cam;% 内外参数 P_rect:矫正后的投影矩阵,用于从矫正后的0号相机坐标系 投影到 X号相机的图像平面。 img = imread(sprintf('%s/%010d.png', base_dir, frame)); fid = fopen(sprintf('%s/%010d.bin',base_dir,frame),'rb'); velo = fread(fid,[4 inf],'single')'; %velo = velo(1:5:end,:); % 显示速度每5点移除一次 fclose(fid); % 删除图像平面后面的所有点(近似值) idx = velo(:,1)<5; velo(idx,:) = []; % 投影到图像平面(排除亮度 % velo_img为点云在图像上的坐标 velo_img = project(velo(:,1:3),P_velo_to_img); %原图像维数 img_d1 = size(img,1); img_d2 = size(img,2); %预分配内存 velo_img_rgb = ones(size(velo_img,1),3) * 255; %取点云对应像素的RGB值 for i=1:size(velo_img,1) %取整(点云x,y轴和图像是反的) y=round(velo_img(i,1)); x=round(velo_img(i,2)); %排除在图像外的点云点(图像小点云多,点云并不能完全映射到图像上) if x>0 && x<=img_d1 && y>0 && y<=img_d2 velo_img_rgb(i,1:3) = img(x,y,1:3); end end %取原点云x,y,z velo_xyz = velo(:,1:3); % 颜色矩阵要用colormap color_m = colormap(velo_img_rgb./255); %构造一个pointCloud对象 ptCloud = pointCloud(velo_xyz,'Color',color_m); pcshow(ptCloud);