题目连接
https://leetcode.com/problems/4sum/
4Sum
Description
Given an array $S$ of n integers, are there elements $a, b, c,$ and d in $S$ such that $a + b + c + d = target?$ Find all unique quadruplets in the array which gives the sum of target.
**Note**: The solution set must not contain duplicate quadruplets.
For example, given array $S = [1, 0, -1, 0, -2, 2]$, and $target = 0$.
A solution set is:
[
[-1, 0, 0, 1],
[-2, -1, 1, 2],
[-2, 0, 0, 2]
]
二分查找,先预先枚举出$a + b$所得的$n^2$个数字并排好序。
然后判断是否有$a+b=target-c-d$(二分查找即可)
PS:注意所求的四个数下标各不相同,枚举的时候要加以判断
PPS:所得结果可能需要去重。
class Solution { using vec = vector<int>; using mat = vector<vec>; using pii = pair<int, pair<int, int>>; public: mat fourSum(vec& nums, int target) { mat res; int n = 0; if(!(n = nums.size()) || n < 4) return res; vector<pii> vpi; for(int i = 0; i < n; i++) { for(int j = i + 1; j < n; j++) { vpi.push_back({ nums[i] + nums[j], { i, j } }); } } sort(vpi.begin(), vpi.end(), [](pii &a, pii &b)->bool { return a.first < b.first; }); int size = vpi.size(); for(int i = 0; i < n; i++) { for(int j = i + 1; j < n; j++) { int lb = 0, ub = size - 1; int k = target - nums[i] - nums[j]; while(lb <= ub) { int m = (lb + ub) >> 1; if(vpi[m].first >= k) ub = m - 1; else lb = m + 1; } while(lb < size && vpi[lb].first == k) { auto &r = vpi[lb++].second; if(r.first == i || r.first == j || r.second == i || r.second == j) continue; int a = nums[i], b = nums[j], c = nums[r.first], d = nums[r.second]; if(a + b + c + d != target) continue; if (a > b) swap(a, b); if (c > d) swap(c, d); if (a > c) swap(a, c); if (b > d) swap(b, d); if (b > c) swap(b, c); res.push_back({ a, b, c, d }); } } } sort(res.begin(), res.end()); res.erase(unique(res.begin(), res.end()), res.end()); return res; } };