zoukankan      html  css  js  c++  java
  • poj 1679 The Unique MST (次小生成树(sec_mst)【kruskal】)

    The Unique MST
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 35999   Accepted: 13145

    Description

    Given a connected undirected graph, tell if its minimum spanning tree is unique.

    Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties:
    1. V' = V.
    2. T is connected and acyclic.

    Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'.

    Input

    The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.

    Output

    For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

    Sample Input

    2
    3 3
    1 2 1
    2 3 2
    3 1 3
    4 4
    1 2 2
    2 3 2
    3 4 2
    4 1 2
    

    Sample Output

    3
    Not Unique!
    

    C/C++:

     1 #include <map>
     2 #include <queue>
     3 #include <cmath>
     4 #include <vector>
     5 #include <string>
     6 #include <cstdio>
     7 #include <cstring>
     8 #include <climits>
     9 #include <iostream>
    10 #include <algorithm>
    11 #define INF 0x3f3f3f3f
    12 using namespace std;
    13 const int my_max_edge = 10010, my_max_node = 110;
    14 
    15 int t, n, m, my_book_edge[my_max_edge], my_pre[my_max_node], my_first;
    16 
    17 struct edge
    18 {
    19     int a, b, val;
    20 }P[my_max_edge];
    21 
    22 bool cmp(edge a, edge b)
    23 {
    24     return a.val < b.val;
    25 }
    26 
    27 int my_find(int x)
    28 {
    29     int n = x;
    30     while (n != my_pre[n])
    31         n = my_pre[n];
    32     int i = x, j;
    33     while (n != my_pre[i])
    34     {
    35         j = my_pre[i];
    36         my_pre[i] = n;
    37         i = j;
    38     }
    39     return n;
    40 }
    41 
    42 int my_kruskal(int my_flag)
    43 {
    44     int my_ans = 0;
    45     for (int i = 1; i <= n; ++ i)
    46         my_pre[i] = i;
    47 
    48     for (int i = 0; i < m; ++ i)
    49     {
    50         int n1 = my_find(P[i].a), n2 = my_find(P[i].b);
    51         if (n1 == n2 || my_flag == i) continue;
    52         my_pre[n1] = n2;
    53         if (my_first)my_book_edge[i] = 1;
    54         my_ans += P[i].val;
    55     }
    56 
    57     int temp = my_find(1);
    58     for (int i = 2; i <= n; ++ i)
    59         if (temp != my_find(i))
    60             return -1;
    61     return my_ans;
    62 }
    63 
    64 int main()
    65 {
    66     scanf("%d", &t);
    67     while (t --)
    68     {
    69         scanf("%d%d", &n, &m);
    70         for (int i = 0; i < m; ++ i)
    71             scanf("%d%d%d", &P[i].a, &P[i].b, &P[i].val);
    72         sort(P, P + m, cmp);
    73         memset(my_book_edge, 0, sizeof(my_book_edge));
    74 
    75         my_first = 1;
    76         int mst = my_kruskal(-1), flag = 1;
    77         if (mst == -1)
    78         {
    79             printf("0
    ");
    80             continue;
    81         }
    82         my_first = 0;
    83         for (int i = 0; i < m; ++ i)
    84         {
    85             if (my_book_edge[i])
    86             {
    87                 if (mst == my_kruskal(i))
    88                 {
    89                     printf("Not Unique!
    ");
    90                     flag = 0;
    91                     break;
    92                 }
    93             }
    94         }
    95         if (flag) printf("%d
    ", mst);
    96     }
    97     return 0;
    98 }
  • 相关阅读:
    InputMethodService详解
    OPhone平台IMF简介
    android.view.View详解
    [t]为Android平台开发一个输入法
    SoftKeyboard详解
    SoftKeyboard示例之CandidateView详解
    如何开发一个OPhone平台的输入法应用
    KeyboardView.OnKeyboardActionListener详解
    二次开发
    直线职权::参谋职权::职能职权
  • 原文地址:https://www.cnblogs.com/GetcharZp/p/9497554.html
Copyright © 2011-2022 走看看