zoukankan      html  css  js  c++  java
  • R语言学习笔记(十四):聚类分析

    #聚类分析
    par(mfrow=c(1,1))
    #计算距离
    install.packages("flexclust")
    data(nutrient,package="flexclust")
    head(nutrient,4)

    energy protein fat calcium iron
    beef braised 340 20 28 9 2.6
    hamburger 245 21 17 9 2.7
    beef roast 420 15 39 7 2.0
    beef steak 375 19 32 9 2.6

    d<-dist(nutrient)
    as.matrix(d)[1:4,1:4]

                  beef braised hamburger beef roast beef steak
    beef braised 0.00000 95.6400 80.93429 35.24202
    hamburger 95.64000 0.0000 176.49218 130.87784
    beef roast 80.93429 176.4922 0.00000 45.76418
    beef steak 35.24202 130.8778 45.76418 0.00000

    #层次聚类分析
    par(nfrow=c(1,1))
    data(nutrient,package="flexclust")
    row.names(nutrient)<-tolower(row.names(nutrient))
    nutrient.scaled<-scale(nutrient)

    d<-dist(nutrient.scaled)

    fit.average<-hclust(d,method="average")
    plot(fit.average,hang=-1,cex=.8,main="Average Linkage Clustering")

    #选择聚类的个数
    install.packages("NbClust")
    library(NbClust)
    devAskNewPage(ask=TRUE)
    nc<-NbClust(nutrient.scaled,distance="euclidean",min.nc=2,max.nc=15,method="average")
    table(nc$Best.n[1,])

    barplot(table(nc$Best.n[1,]),xlab="Number of Clusters",ylab="Number of Criteria",main="Number of Clusters Chosen by 26 Criteria")


    #获取最终的聚类方案
    par(mfrow=c(1,1))

    clusters<-cutree(fit.average,k=5)
    table(clusters)

    1 2 3 4 5
    7 16 1 2 1

    aggregate(nutrient,by=list(cluster=clusters),median)

      cluster energy protein fat calcium iron
    1 1 340.0 19 29 9 2.50
    2 2 170.0 20 8 13 1.45
    3 3 160.0 26 5 14 5.90
    4 4 57.5 9 1 78 5.70
    5 5 180.0 22 9 367 2.50

    aggregate(as.data.frame(nutrient.scaled),by=list(cluster=clusters),median)

      cluster energy protein fat calcium iron
    1 1 1.3101024 0.0000000 1.3785620 -0.4480464 0.08110456
    2 2 -0.3696099 0.2352002 -0.4869384 -0.3967868 -0.63743114
    3 3 -0.4684165 1.6464016 -0.7534384 -0.3839719 2.40779157
    4 4 -1.4811842 -2.3520023 -1.1087718 0.4361807 2.27092763
    5 5 -0.2708033 0.7056007 -0.3981050 4.1396825 0.08110456

    plot(fit.average,hang=-1,cex=.8,main="Average Linkage Clustering Cluster Solution")

    rect.hclust(fit.average,k=5)

    #划分聚类分析
    install.packages("rattle")
    #install.packages("RGtk2")
    install.packages("https://cran.r-project.org/bin/windows/contrib/3.3/RGtk2_2.20.31.zip", repos=NULL)
    install.packages("httr")
    library("rattle")
    library("RGtk2")
    library("httr")
    a <- GET("https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data")
    wine <- read.csv(textConnection(content(a)), header=F)

    names(wine)<-c("Type","Alcohol","Malic acid","Ash","Alcalinity of ash","Magnesium","Total phenols","Flavanoids","Nonflavanoid phenols","Proanthocyanins","Color intensity","Hue","OD280/OD315 of diluted wines","Proline")
    #data(wine,package="rattle")
    head(wine)
    df<-scale(wine[-1])

    wssplot(df)
    library(NbClust)
    set.seed(1234)
    devAskNewPage(ask=TRUE)
    nc<-NbClust(df,min.nc=2,max.nc=15,method="kmeans")
    table(nc$Best.n[1,])

    barplot(table(nc$Best.n[1,]),xlab="Number of Clusters",ylab="Number of Criteria",main="Number of Clusters Chosen by 26 Criteria")

    set.seed(1234)
    fit.km<-kmeans(df,3,nstart=25)
    fit.km$size
    fit.km$centers

    ct.km<-table(wine$Type,fit.km$cluster)
    ct.km


       1 2 3
    1 59 0 0
    2 3 65 3
    3 0 0 48

    library(flexclust)
    randIndex(ct.km)

    ARI
    0.897495


    #围绕中心点的划分
    library(cluster)
    set.seed(1234)
    fit.pam<-pam(wine[-1],k=3,stand=TRUE)
    fit.pam$method

    clusplot(fit.pam,main="Bivariate Cluster Plot")

    library(flexclust)
    randIndex(ct.pam)

    ARI
    0.6994957


    #围绕中心点的划分
    library(cluster)
    set.seed(1234)
    fit.pam<-pam(wine[-1],k=3,stand=TRUE)
    fit.pam$medoids
    clusplot(fit.pam,main="Bivariate Cluster Plot2")


    ct.pam<-table(wine$Type,fit.pam$clustering)

    randIndex(ct.pam)

    ARI
    0.6994957


    #避免不存在的类
    install.packages("fMultivar")
    library(fMultivar)
    set.seed(1234)
    df<-rnorm2d(1000,rho=.5)
    df<-as.data.frame(df)
    plot(df,main="Binariate Normal Distribution with rho=0.5")


    #wssplot(df)
    library(NbClust)
    nc<-NbClust(df,min.nc=2,max.nc=15,method="kmeans")
    dev.new()
    barplot(table(nc$Best.n[1,]),xlab="Number of Clusters",ylab="Number of Criteria",main="Number of Clusters Chosen by 26 Criteria")


    library(ggplot2)
    library(cluster)
    fit<-pam(df,k=2)
    df$clustering<-factor(fit$clustering)
    ggplot(data=df,aes(x=V1,y=V2,color=clustering,shape=clustering))+geom_point()+ggtitle("Clustering of Bivariate Normal Data")

    plot(nc$All.index[,4],type="o",ylab="CCC",xlab="Number of clusters",col="blue")

  • 相关阅读:
    [openjudge] jubeeeeeat
    [BJOI2006] 狼抓兔子
    [模板]网络最大流
    [HNOI2002]营业额统计
    【Java学习笔记之十一】Java中常用的8大排序算法详解总结
    【Java学习笔记之十】Java中循环语句foreach使用总结及foreach写法失效的问题
    【Java学习笔记之九】java二维数组及其多维数组的内存应用拓展延伸
    【Java学习笔记之八】JavaBean中布尔类型使用注意事项
    【Java学习笔记之七】java函数的语法规则总结
    二分图匹配--匈牙利算法模板
  • 原文地址:https://www.cnblogs.com/GhostBear/p/7788954.html
Copyright © 2011-2022 走看看