题目链接:http://poj.org/problem?id=2229
Sumsets
Time Limit: 2000MS Memory Limit: 200000K
Total Submissions: 21845 Accepted: 8454
Description
Farmer John commanded his cows to search for different sets of numbers that sum to a given number. The cows use only numbers that are an integer power of 2. Here are the possible sets of numbers that sum to 7:
1) 1+1+1+1+1+1+1
2) 1+1+1+1+1+2
3) 1+1+1+2+2
4) 1+1+1+4
5) 1+2+2+2
6) 1+2+4
Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).
Input
A single line with a single integer, N.
Output
The number of ways to represent N as the indicated sum. Due to the potential huge size of this number, print only last 9 digits (in base 10 representation).
Sample Input
7
Sample Output
6
解题心得:
- 问给你一系列2的N次方的数,让你用这些数相加起来等于m,问一共有多少种方法。
- 刚开始看到这个题的时候第一个反应就是青蛙跳台阶的问题(链接),按照这个思路状态转移就出来了。dp[n][m] += dp[n-1][m-k*c[i]],在空间上优化可以使用滚动数组来进行优化。这样还是会TLE,因为没有优化过的完全背包是三重循环,这个时候就需要用到完全背包的优化,完全背包的优化其实很简单,思想就是既然背包有无穷多个,那么直接从小到大开始叠加就行了,会自然叠加到最大,这样就可以省去k个背包的循环,利用的就是k无穷大不用一一进行枚举。可以很简单的看懂优化代码。
没有优化过的完全背包(大概写法):
for(int i=0;i<n;i++) {
for(int k=1;k*c[i] <= n;k++) {
for(int j=m;j>=k*c[i];k--) {
dp[j] += dp[j-k*c[i]];
}
}
}
完全背包的时间优化(大概写法):
for(int i=0;i<n;i++) {
for(int j=c[i];j<=n;j++) {//注意这里是从小到大开始叠加
dp[j] += dp[j-c[i]];
}
}
AC代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = (int) 1e6 + 10;
int n, dp[maxn];
int Mod = (int) 1e9;
int main() {
int T = 1;
while (~scanf("%d", &n)) {
memset(dp, 0, sizeof(dp));
dp[0] = 1;
while (T <= n) {
for (int j = T; j <= n; j++) {
dp[j] += dp[j - T];
dp[j] %= Mod;
}
T <<= 1;
}
printf("%d
", dp[n]);
return 0;
}
}