zoukankan      html  css  js  c++  java
  • A three term boundary value problem

    填个去年八月份的坑...

    A three term boundary value problem

    给定序列({d_1,d_2,ldots,d_{N-1}}),有(au_{n+1}+bu_n+cu_{n-1}=d_n)(n=1,2,ldots,N-1;u_0=u_N=0)
    求解序列({u_n}_{n=1}^{N-1})
    (U(x)=sumlimits_{i=0}^N u_ix^i,D(x)=sumlimits_{i=1}^{N-1}d_ix^i)
    根据({u_i})({d_i})的关系,容易得到:

    [frac{a}{x}(U(x)-u_1x)+bU(x)+cx(U(x)-u_{N-1}x^{N-1})=D(x) ]

    整理得到,

    [(a+bx+cx^2)U(x)=x(D(x)+au_1+cu_{N-1}x^N) ]

    对于(a+bx+cx^2=0)的两个解(r_{+},r_{-}),若(r_{+} eq r_{-}),则容易得到:

    [egin{aligned} au_1+(cr_{+}^N)u_{N-1}=-D(r_{+})\ au_1+(cr_{-}^N)u_{N-1}=-D(r_{-})\ end{aligned}]

    解出(u_1,u_{N-1})即可。

    (r_{+}=r_{-}),需要另外得到一个关于(u_1,u_{N-1})的等式:

    (a+bx+c=c(x-k)^2),有

    [c(x-k)^2U(x)=x(D(x)+au_1+cu_{N-1}x^N) ]

    (x)微分:

    [c(x-k)^2frac{dU(x)}{dx}+2c(x-k)U(x)=x(frac{dD(x)}{dx}+cNu_{N-1}x^{N-1})+(D(x)+au_1+cu_{N-1}x^N) ]

    (x=k),有,

    [0=k(D'(k)+cNu_{N-1}k^{N-1}) ]

  • 相关阅读:
    使用pca/lda降维
    交叉验证
    各模型选择及工作流程
    岭回归
    线性回归
    K-临近算法(KNN)
    django中的中间件
    django中form组件
    javascript中的词法分析
    Django之Model操作
  • 原文地址:https://www.cnblogs.com/Grice/p/14788749.html
Copyright © 2011-2022 走看看