zoukankan      html  css  js  c++  java
  • ThreadPoolExecutor源码分析

    前言

      在熟练掌握如何使用线程池之后,我们来对ThreadPoolExecutor进行源码分析。希望大家保持对源码的阅读热情,不仅要知其然,也要知其所以然。阅读源码比较苦涩,请养成反复研究琢磨为什么这么写的精神,多推敲。冲鸭!

      其实有时候想不通的时候可以看一下英文注释,还是作者解释的精准

    1 ThreadPoolExecutor类图

    2 ThreadPoolExecutor重要变量

    2.1 ctl

      这个变量是整个类的核心,AtomicInteger保证了原子性,这个变量存储了2个内容

    • 线程池的状态
    • 所有工作线程的数量
    // int是4个字节,有32位,这里的ctl前3位表示线程池的状态,后29位标识工作线程的数量
    private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
    // Integer.SIZE - 3 = 29
    private static final int COUNT_BITS = Integer.SIZE - 3;
    // 容量 000 11111111111111111111111111111
    private static final int CAPACITY   = (1 << COUNT_BITS) - 1;
    // runState is stored in the high-order bits
    // 运行中状态 111 00000000000000000000000000000 (-536870912)  括号内为十进制的
    private static final int RUNNING    = -1 << COUNT_BITS;
    // 关闭状态 000 00000000000000000000000000000   (0)
    private static final int SHUTDOWN   =  0 << COUNT_BITS;
    // 停止状态 001 00000000000000000000000000000   (536870912)
    private static final int STOP       =  1 << COUNT_BITS;
    // 整理状态 010 00000000000000000000000000000   (1073741824)
    private static final int TIDYING    =  2 << COUNT_BITS;
    // 终结状态 011 00000000000000000000000000000   (1610612736)
    private static final int TERMINATED =  3 << COUNT_BITS;
    // Packing and unpacking ctl
    // 先非然后位与运算符获取线程池运行的状态,也就是前3位
    private static int runStateOf(int c)     { return c & ~CAPACITY; }
    // 位与运算符获取工作线程数量,也就是后29位
    private static int workerCountOf(int c)  { return c & CAPACITY; }
    private static int ctlOf(int rs, int wc) { return rs | wc; }

      线程池的状态

    • RUNNING:接收任务,处理workQueue队列里的任务
    • SHUTDOWN:不再接收新的任务,但是处理workQueue队列里的任务
    • STOP:拒绝新任务并且抛弃队列里的任务
    • TIDYING:将要调用terminated方法
    • TERMINATED:终结状态

    2.2 Woker静态内部类

      Worker实现了Runnable接口,说明可以当做一个可执行的任务。Woker也继承了AbstractQueuedSynchronizer,说明可以实现锁的功能,他是一个简单的不可重入的互斥锁,工作线程执行任务的时候,会先加锁,如果想要中断工作线程,需要先获取锁,否则无法中断,工作线程执行完任务才会释放锁,然后接着从workQueue获取任务继续执行。Worker的主要作用是执行队列的任务,并管理工作线程和统计一些东西。

    /**
     * Class Worker mainly maintains interrupt control state for
     * threads running tasks, along with other minor bookkeeping.
     * This class opportunistically extends AbstractQueuedSynchronizer
     * to simplify acquiring and releasing a lock surrounding each
     * task execution.  This protects against interrupts that are
     * intended to wake up a worker thread waiting for a task from
     * instead interrupting a task being run.  We implement a simple
     * non-reentrant mutual exclusion lock rather than use
     * ReentrantLock because we do not want worker tasks to be able to
     * reacquire the lock when they invoke pool control methods like
     * setCorePoolSize.  Additionally, to suppress interrupts until
     * the thread actually starts running tasks, we initialize lock
     * state to a negative value, and clear it upon start (in
     * runWorker).
     */
    private final class Worker
        extends AbstractQueuedSynchronizer
        implements Runnable
    {
        /**
         * This class will never be serialized, but we provide a
         * serialVersionUID to suppress a javac warning.
         */
        private static final long serialVersionUID = 6138294804551838833L;
        /** Thread this worker is running in.  Null if factory fails. */
        // 工作线程
        final Thread thread;
        /** Initial task to run.  Possibly null. */
        // 第一个任务
        Runnable firstTask;
        /** Per-thread task counter */
        // 该工作线程已经完成任务的数量
        volatile long completedTasks;
        /**
         * Creates with given first task and thread from ThreadFactory.
         * @param firstTask the first task (null if none)
         */
        Worker(Runnable firstTask) {
            // 直到runWorker方法禁止被中断
            setState(-1); 
            this.firstTask = firstTask;
            // 从线程工厂获取线程,并把第一个任务给worker
            this.thread = getThreadFactory().newThread(this);
        }
        /** Delegates main run loop to outer runWorker  */
        public void run() {
            runWorker(this);
        }
        // Lock methods
        //
        // The value 0 represents the unlocked state.
        // The value 1 represents the locked state.
        protected boolean isHeldExclusively() {
            return getState() != 0;
        }
        protected boolean tryAcquire(int unused) {
            if (compareAndSetState(0, 1)) {
                setExclusiveOwnerThread(Thread.currentThread());
                return true;
            }
            return false;
        }
        protected boolean tryRelease(int unused) {
            setExclusiveOwnerThread(null);
            setState(0);
            return true;
        }
        public void lock()        { acquire(1); }
        public boolean tryLock()  { return tryAcquire(1); }
        public void unlock()      { release(1); }
        public boolean isLocked() { return isHeldExclusively(); }
        void interruptIfStarted() {
            Thread t;
            if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
                try {
                    t.interrupt();
                } catch (SecurityException ignore) {
                }
            }
        }
    }

    3 ThreadPoolExecutor重要函数

    3.1 execute(Runnable command)

    /**
     * Executes the given task sometime in the future.  The task
     * may execute in a new thread or in an existing pooled thread.
     *
     * If the task cannot be submitted for execution, either because this
     * executor has been shutdown or because its capacity has been reached,
     * the task is handled by the current {@code RejectedExecutionHandler}.
     *
     * @param command the task to execute
     * @throws RejectedExecutionException at discretion of
     *         {@code RejectedExecutionHandler}, if the task
     *         cannot be accepted for execution
     * @throws NullPointerException if {@code command} is null
     */
    public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        /*
         * Proceed in 3 steps:
         *
         * 1. If fewer than corePoolSize threads are running, try to
         * start a new thread with the given command as its first
         * task.  The call to addWorker atomically checks runState and
         * workerCount, and so prevents false alarms that would add
         * threads when it shouldn't, by returning false.
         *
         * 2. If a task can be successfully queued, then we still need
         * to double-check whether we should have added a thread
         * (because existing ones died since last checking) or that
         * the pool shut down since entry into this method. So we
         * recheck state and if necessary roll back the enqueuing if
         * stopped, or start a new thread if there are none.
         *
         * 3. If we cannot queue task, then we try to add a new
         * thread.  If it fails, we know we are shut down or saturated
         * and so reject the task.
         */
        // 获取线程池状态和线程数
        int c = ctl.get();
        // 工作线程数小于核心线程数
        if (workerCountOf(c) < corePoolSize) {
            // 添加工作线程
            if (addWorker(command, true))
                return;
            // 添加工作线程失败则重新获取线程池状态和线程数
            c = ctl.get();
        }
        // 线程池正在运行且任务可以将任务放进队列里
        if (isRunning(c) && workQueue.offer(command)) {
            // 重新检查 - 获取线程池状态和线程数
            int recheck = ctl.get();
            // 这里重新检查是为了以下2种情况
            // 1.当offer方法执行之后,线程池关闭了,回滚之前放入队列的操作并拒绝任务
            if (! isRunning(recheck) && remove(command))
                reject(command);
            // 2.线程池里没有可用的消费线程,比如现在核心线程数就1个,前一个任务抛异常了
            // 那么现在就没有可用的消费线程了,所以要判断还有没有Worker,这步很关键
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        // 新增线程失败则拒绝任务
        else if (!addWorker(command, false))
            reject(command);
    }

    3.2 addWorker(Runnable firstTask, boolean core)

    /*
     * Methods for creating, running and cleaning up after workers
     */
    /**
     * Checks if a new worker can be added with respect to current
     * pool state and the given bound (either core or maximum). If so,
     * the worker count is adjusted accordingly, and, if possible, a
     * new worker is created and started, running firstTask as its
     * first task. This method returns false if the pool is stopped or
     * eligible to shut down. It also returns false if the thread
     * factory fails to create a thread when asked.  If the thread
     * creation fails, either due to the thread factory returning
     * null, or due to an exception (typically OutOfMemoryError in
     * Thread.start()), we roll back cleanly.
     *
     * @param firstTask the task the new thread should run first (or
     * null if none). Workers are created with an initial first task
     * (in method execute()) to bypass queuing when there are fewer
     * than corePoolSize threads (in which case we always start one),
     * or when the queue is full (in which case we must bypass queue).
     * Initially idle threads are usually created via
     * prestartCoreThread or to replace other dying workers.
     *
     * @param core if true use corePoolSize as bound, else
     * maximumPoolSize. (A boolean indicator is used here rather than a
     * value to ensure reads of fresh values after checking other pool
     * state).
     * @return true if successful
     */
    private boolean addWorker(Runnable firstTask, boolean core) {
        retry:
        // 外循环
        for (;;) {
            // 获取线程池状态和线程数
            int c = ctl.get();
            // 线程池状态
            int rs = runStateOf(c);
            // Check if queue empty only if necessary.
            // 这里我做了一个小调整,看着舒服点,以下几种情况会返回false
            // 1.线程池状态为STOP,TIDYING,TERMINATED
            // 2.线程池状态为SHUTDOWN且工作线程的firstTask不为空
            // 3.线程池状态为SHUTDOWN且队列为空
            if (rs >= SHUTDOWN && (rs != SHUTDOWN || firstTask != null || workQueue.isEmpty()))
                return false;
            // 内循环
            for (;;) {
                // 获取工作线程数
                int wc = workerCountOf(c);
                // 如果工作线程大于容量或者工作线程大于核心线程数(或者最大线程数)返回false
                if (wc >= CAPACITY || wc >= (core ? corePoolSize : maximumPoolSize))
                    return false;
                // 添加工作线程+1
                if (compareAndIncrementWorkerCount(c))
                    break retry;
                // 重新获取线程池状态和线程数
                c = ctl.get();  // Re-read ctl
                // 如果线程池状态变了,那么重新走外循环
                if (runStateOf(c) != rs)
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
                // 如果CAS操作失败,那么重新走内循环
            }
        }
        // 线程是否开始工作
        boolean workerStarted = false;
        // 线程是否添加到工作线程集合
        boolean workerAdded = false;
        Worker w = null;
        try {
            w = new Worker(firstTask);
            final Thread t = w.thread;
            if (t != null) {
                // 利用显式锁加锁添加Worker
                final ReentrantLock mainLock = this.mainLock;
                mainLock.lock();
                try {
                    // Recheck while holding lock.
                    // Back out on ThreadFactory failure or if
                    // shut down before lock acquired.
                    int rs = runStateOf(ctl.get());
                    // 如果线程池状态是RUNNING或者是SHUTDOWN&&第一个任务为空
                    if (rs < SHUTDOWN || (rs == SHUTDOWN && firstTask == null)) {
                        // 检查这个线程是否处于活动状态 - RUNNABLE或者RUNNING
                        if (t.isAlive()) // precheck that t is startable
                            throw new IllegalThreadStateException();
                        //添加到工作线程集合
                        workers.add(w);
                        int s = workers.size();
                        if (s > largestPoolSize)
                            largestPoolSize = s;
                        workerAdded = true;
                    }
                } finally {
                    mainLock.unlock();
                }
                // 如果添加到工作线程集合则开始工作
                if (workerAdded) {
                    t.start();
                    workerStarted = true;
                }
            }
        } finally {
            // 如果线程没有开始工作,那么工作线程数量-1
            if (! workerStarted)
                addWorkerFailed(w);
        }
        return workerStarted;
    }

    3.3 runWorker(Worker w)

    /**
     * Main worker run loop.  Repeatedly gets tasks from queue and
     * executes them, while coping with a number of issues:
     *
     * 1. We may start out with an initial task, in which case we
     * don't need to get the first one. Otherwise, as long as pool is
     * running, we get tasks from getTask. If it returns null then the
     * worker exits due to changed pool state or configuration
     * parameters.  Other exits result from exception throws in
     * external code, in which case completedAbruptly holds, which
     * usually leads processWorkerExit to replace this thread.
     *
     * 2. Before running any task, the lock is acquired to prevent
     * other pool interrupts while the task is executing, and then we
     * ensure that unless pool is stopping, this thread does not have
     * its interrupt set.
     *
     * 3. Each task run is preceded by a call to beforeExecute, which
     * might throw an exception, in which case we cause thread to die
     * (breaking loop with completedAbruptly true) without processing
     * the task.
     *
     * 4. Assuming beforeExecute completes normally, we run the task,
     * gathering any of its thrown exceptions to send to afterExecute.
     * We separately handle RuntimeException, Error (both of which the
     * specs guarantee that we trap) and arbitrary Throwables.
     * Because we cannot rethrow Throwables within Runnable.run, we
     * wrap them within Errors on the way out (to the thread's
     * UncaughtExceptionHandler).  Any thrown exception also
     * conservatively causes thread to die.
     *
     * 5. After task.run completes, we call afterExecute, which may
     * also throw an exception, which will also cause thread to
     * die. According to JLS Sec 14.20, this exception is the one that
     * will be in effect even if task.run throws.
     *
     * The net effect of the exception mechanics is that afterExecute
     * and the thread's UncaughtExceptionHandler have as accurate
     * information as we can provide about any problems encountered by
     * user code.
     *
     * @param w the worker
     */
    final void runWorker(Worker w) {
        // 此处获取的wt就是Worker里的thread 
        Thread wt = Thread.currentThread();
        Runnable task = w.firstTask;
        w.firstTask = null;
        // 这里为什么要先unlock一下呢?到这一行代码为止,我们没有进行任何的任务处理
        // Worker的构造函数中,setState(-1);这一行代码抑制了线程中断,所以这里需要unlock从而允许中断
        w.unlock(); // allow interrupts
        // 是否是异常终止的标识,默认为true。有2中情况为true
        // 1.执行任务抛出了异常
        // 2.worker被中断
        boolean completedAbruptly = true;
        try {
            // 获取任务,如果getTask()方法返回null,那么随之worker也要-1,之后有getTask()方法分析
            // 只有在等待从workQueue队列里获取任务的时候才能中断。
            // 第一次执行传入的任务,之后从workQueue队列里获取任务,如果队列为空则等待keepAliveTime这么久
            while (task != null || (task = getTask()) != null) {
                // 加锁的目的在于防止在执行任务的时候,中断当前worker
                w.lock();
                // If pool is stopping, ensure thread is interrupted;
                // if not, ensure thread is not interrupted.  This
                // requires a recheck in second case to deal with
                // shutdownNow race while clearing interrupt
                // 这个方法比较重要,当线程池正在关闭,确保worker被中断
                // 有2次runStateAtLeast(ctl.get(), STOP)方法调用是因为double-check
                // 第2次检查Thread.interrupted(),该方法会直接擦除线程的interrupt标识
                if ((runStateAtLeast(ctl.get(), STOP) || (Thread.interrupted() && runStateAtLeast(ctl.get(), STOP))) && !wt.isInterrupted())
                    wt.interrupt();
                try {
                    // 执行任务之前的操作,如统计日志等,子类自己实现
                    beforeExecute(wt, task);
                    Throwable thrown = null;
                    try {
                        task.run();
                    } catch (RuntimeException x) {
                        thrown = x; throw x;
                    } catch (Error x) {
                        thrown = x; throw x;
                    } catch (Throwable x) {
                        // 将异常包装成Error抛出
                        thrown = x; throw new Error(x);
                    } finally {
                        // 执行任务之前的操作,如统计日志等,子类自己实现
                        afterExecute(task, thrown);
                    }
                } finally {
                    task = null;
                    w.completedTasks++;
                    // 解锁,一次任务的执行结束
                    w.unlock();
                }
            }
            completedAbruptly = false;
        } finally {
            // 结束worker的清理工作
            processWorkerExit(w, completedAbruptly);
        }
    }

    3.4 getTask()

    /**
     * Performs blocking or timed wait for a task, depending on
     * current configuration settings, or returns null if this worker
     * must exit because of any of:
     * 1. There are more than maximumPoolSize workers (due to
     *    a call to setMaximumPoolSize).
     * 2. The pool is stopped.
     * 3. The pool is shutdown and the queue is empty.
     * 4. This worker timed out waiting for a task, and timed-out
     *    workers are subject to termination (that is,
     *    {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
     *    both before and after the timed wait, and if the queue is
     *    non-empty, this worker is not the last thread in the pool.
     *
     * @return task, or null if the worker must exit, in which case
     *         workerCount is decremented
     */
    private Runnable getTask() {
        boolean timedOut = false; // Did the last poll() time out?
        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);
            // Check if queue empty only if necessary.
            // 当线程池状态是STOP或者SHUTDOWN并且workQueue队列是空的,返回null
            if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                decrementWorkerCount();
                return null;
            }
            int wc = workerCountOf(c);
            // timed用来判断该工作线程是否有超时控制?
            // allowCoreThreadTimeOut参数是是否允许核心线程也有keepAliveTime这么一个属性
            // 核心线程默认是没有超时限制
            boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
            // 条件1:如果工作线程大于最大线程数或者超时了
            // 条件2:如果工作线程大于1或者workQueue队列为空
            // 满足以上2个条件则返回null
            if ((wc > maximumPoolSize || (timed && timedOut)) && (wc > 1 || workQueue.isEmpty())) {
                if (compareAndDecrementWorkerCount(c))
                    return null;
                continue;
            }
            try {
                // 一个是阻塞方法,一个是非阻塞方法,关键还是看timed这个变量,见上
                Runnable r = timed ?
                    workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                    workQueue.take();
                if (r != null)
                    return r;
                timedOut = true;
            } catch (InterruptedException retry) {
                timedOut = false;
            }
        }
    }

     3.5 shutdown

      线程池将不会再接收新的任务,将先前放在队列中的任务执行完成。

    /**
     * Initiates an orderly shutdown in which previously submitted
     * tasks are executed, but no new tasks will be accepted.
     * Invocation has no additional effect if already shut down.
     *
     * <p>This method does not wait for previously submitted tasks to
     * complete execution.  Use {@link #awaitTermination awaitTermination}
     * to do that.
     *
     * @throws SecurityException {@inheritDoc}
     */
    public void shutdown() {
        // 获取显式锁
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            // 检查shutdown权限
            checkShutdownAccess();
            // 将线程池状态改为SHUTDOWN
            advanceRunState(SHUTDOWN);
            // 中断空闲worker
            // 如果该线程正在工作,则不中断
            interruptIdleWorkers();
            onShutdown(); // hook for ScheduledThreadPoolExecutor
        } finally {
            mainLock.unlock();
        }
        // 保证workQueue里的剩余任务可以执行完
        tryTerminate();
    }

    参考资料:

    《Java concurrence in practice》

    https://www.cnblogs.com/leesf456/p/5585627.html

  • 相关阅读:
    Java图像处理
    Java图像处理
    Java文字图像识别(1)[88250原创]
    简单的Java图像处理程序
    英语、日语
    My First English Thread
    word的常用操作
    C++中结构体的的慨念和使用方法
    C#调用dll(C++(Win32))时的类型转换总结
    设置VS2008和IE8 调试ATL MFC ActiveX控件
  • 原文地址:https://www.cnblogs.com/GrimMjx/p/10284893.html
Copyright © 2011-2022 走看看