zoukankan      html  css  js  c++  java
  • ZOJ 2853

    原题链接

    描述

    Evolution is a long, long process with extreme complexity and involves many species. Dr. C. P. Lottery is currently investigating a simplified model of evolution: consider that we have N (2 <= N <= 200) species in the whole process of evolution, indexed from 0 to N -1, and there is exactly one ultimate species indexed as N-1. In addition, Dr. Lottery divides the whole evolution process into M (2 <= M <= 100000) sub-processes. Dr. Lottery also gives an 'evolution rate' P(i, j) for 2 species i and j, where i and j are not the same, which means that in an evolution sub-process, P(i, j) of the population of species i will transform to species j, while the other part remains unchanged.
    Given the initial population of all species, write a program for Dr. Lottery to determine the population of the ultimate species after the evolution process. Round your final result to an integer.

    输入

    The input contains multiple test cases!
    Each test case begins with a line with two integers N, M. After that, there will be a line with N numbers, indicating the initial population of each species, then there will be a number T and T lines follow, each line is in format "i j P(i,j)" (0 <= P(i,j) <=1).
    A line with N = 0 and M = 0 signals the end of the input, which should not be proceed.

    输出

    For each test case, output the rounded-to-integer population of the ultimate species after the whole evolution process. Write your answer to each test case in a single line.

    注意

    There will be no 'circle's in the evolution process.
    E.g. for each species i, there will never be a path i, s1, s2, ..., st, i, such that P(i,s1) <> 0, P(sx,sx+1) <> 0 and P(st, i) <> 0.
    The initial population of each species will not exceed 100,000,000.
    There're totally about 5 large (N >= 150) test cases in the input.

    举例

    Let's assume that P(0, 1) = P(1, 2) = 1, and at the beginning of a sub-process, the populations of 0, 1, 2 are 40, 20 and 10 respectively, then at the end of the sub-process, the populations are 0, 40 and 30 respectively.

    样例输入

    2 3
    100 20
    1
    0 1 1.0
    4 100
    1000 2000 3000 0
    3
    0 1 0.19
    1 2 0.05
    0 2 0.67
    0 0

    样例输出

    120
    0

    思路

    第一关是读懂题意,我这种英语渣看了半天才看懂。
    看懂题意后就很简单了,构建矩阵,然后标准的矩阵快速幂,注意最后取整就好。
    顺便这里一个小插曲,我的devcpp报段错误,似乎是我把矩阵开太大的原因,但是数据范围就这么大,提交之后却AC了,也是尴尬。

    代码

    #include <cstdio>
    #include<cstring>
    #define ll long long
    #define maxn 201
    using namespace std;
    
    int k;
    int n;
    
    struct Mat
    {
    	double f[maxn][maxn];
    	void cls(){memset(f, 0, sizeof(f));}//全部置为0 
    	Mat() {cls();}
    	friend Mat operator * (Mat a, Mat b)
    	{
    		Mat res;
    		for(int i = 0; i < n; i++) for(int j = 0; j < n; j++)
    			for(int k = 0; k < n; k++)
    				res.f[i][j] += a.f[i][k] * b.f[k][j];
    		return res;
    	}
    };
    
    Mat quick_pow(Mat a)  
    {  
        Mat ans;
        for(int i = 0; i < n; i++) ans.f[i][i] = 1;
        int b = k;
        while(b != 0)  
        {
            if(b & 1) ans = ans * a;
            b >>= 1;
            a = a * a;
        }
        return ans;  
    }
    
    int main()
    {
    	while(~scanf("%d %d", &n, &k))
    	{
    		if(n + k == 0) break;
    		Mat A, B;
    		for(int i = 0; i < n; i++) A.f[i][i] = 1;
    		for(int i = 0; i < n; i++)
    			scanf("%lf", &B.f[i][0]);
    		int t; scanf("%d", &t);
    		while(t--)
    		{
    			int x, y;
    			double p;
    			scanf("%d %d %lf", &x, &y, &p);
    			A.f[x][x] -= p;
    			A.f[y][x] += p;
    		}
    		A = quick_pow(A);
    		B = A * B;
    		printf("%.0lf
    ", B.f[n-1][0]);
    	}
    	return 0;
    }
    
  • 相关阅读:
    返回页面顶部的方法
    一个获取当前 url 查询字符串中的参数的方法
    那些让你看起来很牛逼的Docker使用技巧
    Docker 1.13 新特性 —— Docker服务编排相关
    docker1.13新功能network关注点
    Docker 1.13 最实用命令行:终于可以愉快地打扫房间了
    Docker 1.13 – 新增功能大揭秘
    Docker 1.13 编排能力进化
    Docker
    Docker
  • 原文地址:https://www.cnblogs.com/HackHarry/p/8399047.html
Copyright © 2011-2022 走看看