zoukankan      html  css  js  c++  java
  • HDU 3836 Equivalent Sets

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=3836

    Equivalent Sets

    Time Limit: 12000/4000 MS (Java/Others)    Memory Limit: 104857/104857 K (Java/Others)
    Total Submission(s): 3469    Accepted Submission(s): 1199


    Problem Description
    To prove two sets A and B are equivalent, we can first prove A is a subset of B, and then prove B is a subset of A, so finally we got that these two sets are equivalent.
    You are to prove N sets are equivalent, using the method above: in each step you can prove a set X is a subset of another set Y, and there are also some sets that are already proven to be subsets of some other sets.
    Now you want to know the minimum steps needed to get the problem proved.
     
    Input
    The input file contains multiple test cases, in each case, the first line contains two integers N <= 20000 and M <= 50000.
    Next M lines, each line contains two integers X, Y, means set X in a subset of set Y.
     
    Output
    For each case, output a single integer: the minimum steps needed.
     
    Sample Input
    4 0 3 2 1 2 1 3
     
    Sample Output
    4 2
    Hint
    Case 2: First prove set 2 is a subset of set 1 and then prove set 3 is a subset of set 1.

     题意

    给你一个有向图,问你至少需要添加多少条边构成强联通。

    题解

    先Tarjan缩点,然后统计有出度为0和入度为0的点的个数,取个最大值即可,至于为什么,请自行脑补。

    代码

    #include<iostream>
    #include<vector>
    #include<cstring>
    #include<algorithm>
    #include<stack>
    #define MAX_N 20002
    using namespace std;
    
    vector<int> G[MAX_N];
    int dfn[MAX_N],low[MAX_N],ind=0;
    bool vis[MAX_N];
    bool inStack[MAX_N];
    
    stack<int> st;
    
    int color[MAX_N],tot=0;
    
    vector<int> newG[MAX_N];
    vector<int> newrG[MAX_N];
    
    void Tarjan(int u) {
        dfn[u] = low[u] = ++ind;
        vis[u] = 1;
        inStack[u] = 1;
        st.push(u);
    
        for (int i = 0; i < G[u].size(); i++) {
            int v = G[u][i];
            if (!vis[v]) {
                Tarjan(v);
                low[u] = min(low[u], low[v]);
            }
            else if (inStack[v])
                low[u] = min(dfn[v], low[u]);
        }
        if (dfn[u] == low[u]) {
            int x;
            do {
                x = st.top();
                st.pop();
                inStack[x] = 0;
                color[x] = tot;
            } while (x != u);
            tot++;
        }
    }
    
    int main() {
        int n, m;
        cin.sync_with_stdio(false);
        while (cin >> n >> m) {
            memset(vis, 0, sizeof(vis));
            memset(inStack, 0, sizeof(inStack));
            while (st.size())st.pop();
            for (int i = 0; i <= n; i++)G[i].clear();
            for (int i = 0; i <= n; i++)newG[i].clear();
            for (int i = 0; i <= n; i++)newrG[i].clear();
            ind = 0;
            tot = 0;
            memset(color, 0, sizeof(color));
    
            for (int i = 0; i < m; i++) {
                int u, v;
                cin >> u >> v;
                G[u].push_back(v);
            }
            for (int i = 1; i <= n; i++)
                if (!vis[i])Tarjan(i);
            for (int i = 1; i <= n; i++)
                for (int j = 0; j < G[i].size(); j++) {
                    int u = color[i], v = color[G[i][j]];
                    if (u == v)continue;
                    newG[u].push_back(v);
                    newrG[v].push_back(u);
                }
            if (tot == 1) {
                cout << 0 << endl;
                continue;
            }
            int a = 0, b = 0;
            for (int i = 0; i < tot; i++)if (newG[i].size() == 0)a++;
            for (int i = 0; i < tot; i++)if (newrG[i].size() == 0)b++;
            cout << max(a, b) << endl;
        }
        return 0;
    }
  • 相关阅读:
    ****阿里云使用+快速运维总结(不断更新)
    Linux 标准目录结构
    linux awk命令
    反射型 DDoS 攻击的原理和防范措施
    容器平台选型的十大模式:Docker、DC/OS、K8S 谁与当先?
    谈谈数据库的跨机房容灾-网易云
    前端 支持 超大上G,多附件上传
    java 支持 超大上G,多附件上传讨论
    java 支持 超大上G,多附件上传分享
    java 支持 超大上G,多附件上传功能
  • 原文地址:https://www.cnblogs.com/HarryGuo2012/p/4715235.html
Copyright © 2011-2022 走看看