zoukankan      html  css  js  c++  java
  • HDU 3836 Equivalent Sets

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=3836

    Equivalent Sets

    Time Limit: 12000/4000 MS (Java/Others)    Memory Limit: 104857/104857 K (Java/Others)
    Total Submission(s): 3469    Accepted Submission(s): 1199


    Problem Description
    To prove two sets A and B are equivalent, we can first prove A is a subset of B, and then prove B is a subset of A, so finally we got that these two sets are equivalent.
    You are to prove N sets are equivalent, using the method above: in each step you can prove a set X is a subset of another set Y, and there are also some sets that are already proven to be subsets of some other sets.
    Now you want to know the minimum steps needed to get the problem proved.
     
    Input
    The input file contains multiple test cases, in each case, the first line contains two integers N <= 20000 and M <= 50000.
    Next M lines, each line contains two integers X, Y, means set X in a subset of set Y.
     
    Output
    For each case, output a single integer: the minimum steps needed.
     
    Sample Input
    4 0 3 2 1 2 1 3
     
    Sample Output
    4 2
    Hint
    Case 2: First prove set 2 is a subset of set 1 and then prove set 3 is a subset of set 1.

     题意

    给你一个有向图,问你至少需要添加多少条边构成强联通。

    题解

    先Tarjan缩点,然后统计有出度为0和入度为0的点的个数,取个最大值即可,至于为什么,请自行脑补。

    代码

    #include<iostream>
    #include<vector>
    #include<cstring>
    #include<algorithm>
    #include<stack>
    #define MAX_N 20002
    using namespace std;
    
    vector<int> G[MAX_N];
    int dfn[MAX_N],low[MAX_N],ind=0;
    bool vis[MAX_N];
    bool inStack[MAX_N];
    
    stack<int> st;
    
    int color[MAX_N],tot=0;
    
    vector<int> newG[MAX_N];
    vector<int> newrG[MAX_N];
    
    void Tarjan(int u) {
        dfn[u] = low[u] = ++ind;
        vis[u] = 1;
        inStack[u] = 1;
        st.push(u);
    
        for (int i = 0; i < G[u].size(); i++) {
            int v = G[u][i];
            if (!vis[v]) {
                Tarjan(v);
                low[u] = min(low[u], low[v]);
            }
            else if (inStack[v])
                low[u] = min(dfn[v], low[u]);
        }
        if (dfn[u] == low[u]) {
            int x;
            do {
                x = st.top();
                st.pop();
                inStack[x] = 0;
                color[x] = tot;
            } while (x != u);
            tot++;
        }
    }
    
    int main() {
        int n, m;
        cin.sync_with_stdio(false);
        while (cin >> n >> m) {
            memset(vis, 0, sizeof(vis));
            memset(inStack, 0, sizeof(inStack));
            while (st.size())st.pop();
            for (int i = 0; i <= n; i++)G[i].clear();
            for (int i = 0; i <= n; i++)newG[i].clear();
            for (int i = 0; i <= n; i++)newrG[i].clear();
            ind = 0;
            tot = 0;
            memset(color, 0, sizeof(color));
    
            for (int i = 0; i < m; i++) {
                int u, v;
                cin >> u >> v;
                G[u].push_back(v);
            }
            for (int i = 1; i <= n; i++)
                if (!vis[i])Tarjan(i);
            for (int i = 1; i <= n; i++)
                for (int j = 0; j < G[i].size(); j++) {
                    int u = color[i], v = color[G[i][j]];
                    if (u == v)continue;
                    newG[u].push_back(v);
                    newrG[v].push_back(u);
                }
            if (tot == 1) {
                cout << 0 << endl;
                continue;
            }
            int a = 0, b = 0;
            for (int i = 0; i < tot; i++)if (newG[i].size() == 0)a++;
            for (int i = 0; i < tot; i++)if (newrG[i].size() == 0)b++;
            cout << max(a, b) << endl;
        }
        return 0;
    }
  • 相关阅读:
    学习zabbix(一)
    学习openstack(七)
    并不对劲的bzoj3677:p3647:[APIO2014]连珠线
    并不对劲的bzoj5415:loj2718:uoj393:p4768:[NOI2018]归程
    并不对劲的bzoj5475:loj2983:p5206:[wc2019]数树
    并不对劲的多项式求ln,exp
    并不对劲的bzoj1758:p4292:[WC2010]重建计划
    (中等) UESTC 94 Bracket Sequence,线段树+括号。
    (简单) HDU 5154 Harry and Magical Computer,图论。
    (中等) UESTC 360 Another LCIS ,线段树+区间更新。
  • 原文地址:https://www.cnblogs.com/HarryGuo2012/p/4715235.html
Copyright © 2011-2022 走看看