zoukankan      html  css  js  c++  java
  • 【转】链表经典问题总汇

    转自:

    http://blog.csdn.net/vividonly/article/details/6673758

    收集了一下链表常见的面试题:

    1、如何判断一个单链表有环

    2、如何判断一个环的入口点在哪里

    3、如何知道环的长度

    4、如何知道两个单链表(无环)是否相交

    5、如果两个单链表(无环)相交,如何知道它们相交的第一个节点是什么

    6、如何知道两个单链表(有环)是否相交

    7、如果两个单链表(有环)相交,如何知道它们相交的第一个节点是什么

    1、采用快慢步长法。令两个指针p和q分别指向头结点,p每次前进一步,q每次前进两步,如果p和q能重合,则有环。可以这么理解,这种做法相当于p静止不动,q每次前进一步,所有肯定有追上p的时候。

    我们注意到,指针pq分别以速度为12前进。如果以其它速度前进是否可以呢?

    假设pq分别以速度为v1v2前进。如果有环,设指针pq第一次进入环时,他们相对于环中第一个节点的偏移地址分别为ab(可以把偏移地址理解为节点个数)

    这样,可以看出,链表有环的充要条件就是某一次循环时,指针pq的值相等,就是它们相对环中首节点的偏移量相等。我们设环中的结点个数为n,程序循环了m次。

    由此可以有下面等式成立:(mod(n)即对n取余)

    (a+m*v1)mod(n) = (b+m*v2) mod(n)

    设等式左边mod(n)的最大整数为k1,等式右边mod(n)的最大整数为k2,则

    (a+m*v1)-k1*n = (b+m*v2)-k2*n

    整理以上等式:

    m= |((k2-k1)*n+a-b)/( v2-v1)|

    如果是等式①成立,就要使循环次数m为一整数。显然如果v2-v11,则等式成立。

    这样pq分别以速度为v1v2|v2-v1|1时,按以上算法就可找出链表中是否有环。当然|v2-v1|不为1时,也可能可以得出符合条件的m。

    1. bool IsExitsLoop(slist *head)
    2. {
    3. slist *slow = head, *fast = head;
    4. while ( fast && fast->next )
    5. {
    6. slow = slow->next;
    7. fast = fast->next->next;
    8. if ( slow == fast ) break;
    9. }
    10. return !(fast == NULL || fast->next == NULL);
    11. }
    bool IsExitsLoop(slist *head)
    {
        slist *slow = head, *fast = head;
    
        while ( fast && fast->next ) 
        {
            slow = slow->next;
            fast = fast->next->next;
            if ( slow == fast ) break;
        }
    
        return !(fast == NULL || fast->next == NULL);
    }

    时间复杂度分析:假设甩尾(在环外)长度为 len1(结点个数),环内长度为 len2,链表总长度为n,则n=len1+len2 。当p步长为1,q步长为2时,p指针到达环入口需要len1时间,p到达入口后,q处于哪里不确定,但是肯定在环内,此时p和q开始追赶,q最长需要len2时间就能追上p(p和q都指向环入口),最短需要1步就能追上p(p指向环入口,q指向环入口的前一个节点)。事实上,每经过一步,q和p的距离就拉近一步,因此,经过q和p的距离步就可以追上p。因此总时间复杂度为O(n),n为链表的总长度。

     

    2、分别从链表头和碰撞点,同步地一步一步前进扫描,直到碰撞,此碰撞点即是环的入口。

    证明如下:

    链表形状类似数字 6 。

    假设甩尾(在环外)长度为 a(结点个数),环内长度为 b 。

    则总长度(也是总结点数)为 a+b 。

    从头开始,0 base 编号。

    将第 i 步访问的结点用 S(i) 表示。i = 0, 1 ...

    当 i<a 时,S(i)=i ;

    当 i≥a 时,S(i)=a+(i-a)%b 。

    分析追赶过程。

    两个指针分别前进,假定经过 x 步后,碰撞。则有:S(x)=S(2x)

    由环的周期性有:2x=tb+x 。得到 x=tb 。

    另,碰撞时,必须在环内,不可能在甩尾段,有 x>=a 。

    连接点为从起点走 a 步,即 S(a)。

    S(a) = S(tb+a) = S(x+a)。

    得到结论:从碰撞点 x 前进 a 步即为连接点。

    根据假设易知 S(a-1) 在甩尾段,S(a) 在环上,而 S(x+a) 必然在环上。所以可以发生碰撞。

    而,同为前进 a 步,同为连接点,所以必然发生碰撞。

    综上,从 x 点和从起点同步前进,第一个碰撞点就是连接点。

    1. slist* FindLoopPort(slist *head)
    2. {
    3. slist *slow = head, *fast = head;
    4. while ( fast && fast->next )
    5. {
    6. slow = slow->next;
    7. fast = fast->next->next;
    8. if ( slow == fast ) break;
    9. }
    10. if (fast == NULL || fast->next == NULL)
    11. return NULL;
    12. slow = head;
    13. while (slow != fast)
    14. {
    15. slow = slow->next;
    16. fast = fast->next;
    17. }
    18. return slow;
    19. }
    slist* FindLoopPort(slist *head)
    {
        slist *slow = head, *fast = head;
    
        while ( fast && fast->next ) 
        {
            slow = slow->next;
            fast = fast->next->next;
            if ( slow == fast ) break;
        }
    
        if (fast == NULL || fast->next == NULL)
            return NULL;
    
        slow = head;
        while (slow != fast)
        {
             slow = slow->next;
             fast = fast->next;
        }
    
        return slow;
    }

    时间复杂度分析:假设甩尾(在环外)长度为 len1(结点个数),环内长度为 len2 。则时间复杂度为“环是否存在的时间复杂度”+O(len1)

     

    3、从碰撞点开始,两个指针p和q,q以一步步长前进,q以两步步长前进,到下次碰撞所经过的操作次数即是环的长度。这很好理解,比如两个运动员A和B从起点开始跑步,A的速度是B的两倍,当A跑玩一圈的时候,B刚好跑完两圈,A和B又同时在起点上。此时A跑的长度即相当于环的长度。

    假设甩尾(在环外)长度为 len1(结点个数),环内长度为 len2 ,则时间复杂度为“环是否存在的时间复杂度”+O(len2)。

     

    4、法一:将链表A的尾节点的next指针指向链表B的头结点,从而构造了一个新链表。问题转化为求这个新链表是否有环的问题。

    时间复杂度为环是否存在的时间复杂度,即O(length(A)+length(B)),使用了两个额外指针

    法二:两个链表相交,则从相交的节点起,其后的所有的节点都是都是两个链表共有的。因此,如果它们相交,则最后一个节点一定是共有的。因此,判断两链表相交的方法是:遍历第一个链表,记住最后一个节点。然后遍历第二个链表,到最后一个节点时和第一个链表的最后一个节点做比较,如果相同,则相交。

    时间复杂度:O(length(A)+length(B)),但是只用了一个额外指针存储最后一个节点

     

    5、将链表A的尾节点的next指针指向链表B的头结点,从而构造了一个环。问题转化为求这个环的入口问题。
    时间复杂度:求环入口的时间复杂度

     

    6、分别判断两个链表A、B是否有环(注,两个有环链表相交是指这个环属于两个链表共有)

    如果仅有一个有环,则A、B不可能相交

    如果两个都有环,则求出A的环入口,判断其是否在B链表上,如果在,则说明A、B相交。

    时间复杂度:“环入口问题的时间复杂度”+O(length(B))

     

    7、分别计算出两个链表A、B的长度LA和LB(环的长度和环到入口点长度之和就是链表长度),参照问题3。

    如果LA>LB,则链表A指针先走LA-LB,链表B指针再开始走,则两个指针相遇的位置就是相交的第一个节点。

    如果LB>LA,则链表B指针先走LB-LA,链表A指针再开始走,则两个指针相遇的位置就是相交的第一个节点。

    时间复杂度:O(max(LA,LB))

  • 相关阅读:
    连续3年!SpreadJS 纯前端表格控件荣获“中国优秀软件产品”
    终于有一款组件可以全面超越Apache POI
    List<Object> 多条件去重
    xml文档的解析并通过工具类实现java实体类的映射:XML工具-XmlUtil
    soap get/post请求
    map转java对象
    springboot postman 对象里传时间格式问题
    spring boot的多环境部署
    Hibernate 之 @Query查询
    利用maven命令将外部jar包导进maven仓库
  • 原文地址:https://www.cnblogs.com/Hilda/p/2668731.html
Copyright © 2011-2022 走看看