zoukankan      html  css  js  c++  java
  • codeforces 251A Points on Line(二分or单调队列)

    Description

    Little Petya likes points a lot. Recently his mom has presented him n points lying on the line OX. Now Petya is wondering in how many ways he can choose three distinct points so that the distance between the two farthest of them doesn't exceed d.

    Note that the order of the points inside the group of three chosen points doesn't matter.

    Input

    The first line contains two integers: n and d (1 ≤ n ≤ 105; 1 ≤ d ≤ 109). The next line contains n integers x1, x2, ..., xn, their absolute value doesn't exceed 109 — the x-coordinates of the points that Petya has got.

    It is guaranteed that the coordinates of the points in the input strictly increase.

    Output

    Print a single integer — the number of groups of three points, where the distance between two farthest points doesn't exceed d.

    Please do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64dspecifier.

    Sample Input

    Input
    4 3
    1 2 3 4
    Output
    4
    Input
    4 2
    -3 -2 -1 0
    Output
    2
    Input
    5 19
    1 10 20 30 50
    Output
    1

    Hint

    In the first sample any group of three points meets our conditions.

    In the seconds sample only 2 groups of three points meet our conditions: {-3, -2, -1} and {-2, -1, 0}.

    In the third sample only one group does: {1, 10, 20}.

    题意:给定一个递增的数列,求出从这个数列中取出3个数,最大值与最小值的差值小于等于k的有多少种。

    思路:有点递推的感觉,每加进来一个数,只考虑这个数的贡献,例如,加进来第5个数的时候,假设前面四个数都符合要求,那么5的贡献就是从前面4个数当中取出两个来的总数,所以就是C 4 2, 这是个组合数。所以考虑每一个数,把每个数的组合数加起来就是了

    代码一(单调队列);

    #include <cstdio>
    #include <iostream>
    #include <cstring>
    #include <cmath>
    #include <cstdlib>
    #include <algorithm>
    
    using namespace std;
    typedef long long ll;
    const int maxn = 100010;
    int a[maxn];
    int q[maxn];
    int main()
    {
        int n, d;
        scanf("%d %d", &n, &d);
        ll ans = 0;
        int front = 1, tail = 0;
        for (int i = 0; i < n; i++)
        {
            scanf("%d", &a[i]);
            q[++tail] = a[i];
            while (tail >= front && q[front] < a[i] - d) front++;
            int j = tail - front;
            ans += (ll)j * (j - 1) / 2;//C n 2
        }
        printf("%I64d
    ", ans);
        return 0;
    }

    代码二(二分):

    #include <cstdio>
    #include <iostream>
    #include <cstring>
    #include <cmath>
    #include <cstdlib>
    #include <algorithm>
    
    using namespace std;
    typedef long long ll;
    const int maxn = 100010;
    int a[maxn];
    int main()
    {
        int n, d;
        scanf("%d %d", &n, &d);
        ll ans = 0;
        for (int i = 0; i < n; i++)
            scanf("%d", &a[i]);
        for (int i = 1; i < n; i++)
        {
            int j = i - (lower_bound(a, a + i, a[i] - d) - a);
            ans += (ll)j * (j - 1) / 2;
        }
        printf("%I64d
    ", ans);
        return 0;
    }
  • 相关阅读:
    算法:最小公倍数的求解方法
    使用C语言中qsort()函数对浮点型数组无法成功排序的问题
    用两个栈模拟实现一个队列
    单链表反向查找
    单链表逆序
    斐波那契(Fibonacci)数列的几种计算机解法
    最大子列和问题
    Visual Studio个人常用快捷键
    数字根(digital root)
    秦九韶算法(霍纳算法)求解多项式
  • 原文地址:https://www.cnblogs.com/Howe-Young/p/4800222.html
Copyright © 2011-2022 走看看