https://www.lydsy.com/JudgeOnline/problem.php?id=3932
题意:给出一些带有等级的线段,求一点上前K小个等级线段的等级之和
询问是对于每一个点询问前K小的和,比较容易想到的是对每一个点都建立一颗权值线段树,维护点的数量和点的等级和。
问题是空间太大,即使动态开点也远远不够,所以考虑用主席树来优化。
由于主席树和前缀和密切相关的特性,我们可以考虑用差分,每一个点T[i]代表这个点的权值线段树,对于一条线段,在S[i]出加上,E[i] + 1处减去,在建立主席树的同时就可以维护出所有点的权值线段树,直接查询即可。
注意:一看数据范围是要离散化的,但是如果去重之后,在权值线段树上取前K个就会遇到一个相同的点上有K + 1个这样的情况,这种情况可以考虑return sum / cnt * k,也可以选择不去重。
#include <map> #include <set> #include <ctime> #include <cmath> #include <queue> #include <stack> #include <vector> #include <string> #include <cstdio> #include <cstdlib> #include <cstring> #include <sstream> #include <iostream> #include <algorithm> #include <functional> using namespace std; #define For(i, x, y) for(int i=x;i<=y;i++) #define _For(i, x, y) for(int i=x;i>=y;i--) #define Mem(f, x) memset(f,x,sizeof(f)) #define Sca(x) scanf("%d", &x) #define Sca2(x,y) scanf("%d%d",&x,&y) #define Sca3(x,y,z) scanf("%d%d%d",&x,&y,&z) #define Scl(x) scanf("%lld",&x); #define Pri(x) printf("%d ", x) #define Prl(x) printf("%lld ",x); #define CLR(u) for(int i=0;i<=N;i++)u[i].clear(); #define LL long long #define ULL unsigned long long #define mp make_pair #define PII pair<int,int> #define PIL pair<int,long long> #define PLL pair<long long,long long> #define pb push_back #define fi first #define se second typedef vector<int> VI; int read(){int x = 0,f = 1;char c = getchar();while (c<'0' || c>'9'){if (c == '-') f = -1;c = getchar();} while (c >= '0'&&c <= '9'){x = x * 10 + c - '0';c = getchar();}return x*f;} const double eps = 1e-9; const int maxn = 1e5 + 10; const int INF = 0x3f3f3f3f; const int mod = 1e9 + 7; int N,M,K; LL Hash[maxn]; struct Task{ LL S,E,P; Task(){} Task(LL S,LL E,LL P):S(S),E(E),P(P){} }task[maxn]; vector<int>Q[2][maxn]; struct Tree{ int lt,rt; LL cnt,sum; }tree[maxn * 50]; int T[maxn],tot; void newnode(int &t){ t = ++tot; tree[t].cnt = tree[t].sum = 0; } void Build(int &t,int l,int r){ newnode(t); if(l == r) return; int m = l + r >> 1; Build(tree[t].lt,l,m); Build(tree[t].rt,m + 1,r); } void update(int &t,int pre,int l,int r,LL p,LL flag){ newnode(t); tree[t] = tree[pre]; tree[t].sum += Hash[p] * flag; tree[t].cnt += flag; if(l == r) return; int m = l + r >> 1; if(p <= m) update(tree[t].lt,tree[pre].lt,l,m,p,flag); else update(tree[t].rt,tree[pre].rt,m + 1,r,p,flag); } LL query(int t,int l,int r,int k){ if(l == r) return Hash[l]; int m = l + r >> 1; int num = tree[tree[t].lt].cnt; if(num >= k) return query(tree[t].lt,l,m,k); else return query(tree[t].rt,m + 1,r,k - num) + tree[tree[t].lt].sum; } bool cmp(Task a,Task b){ return a.P < b.P; } int main(){ Sca2(M,N); for(int i = 1; i <= M ; i ++){ LL S = read(),E = read(),P = read(); task[i] = Task(S,E,P); Hash[i] = P; } sort(Hash,Hash + 1 + M); sort(task + 1,task + 1 + M,cmp); for(int i = 1; i <= M ; i ++){ LL S = task[i].S,E = task[i].E,P = task[i].P; Q[0][S].pb(i); Q[1][E + 1].pb(i); } Build(T[0],1,M); for(int i = 1; i <= N + 1; i ++){ int pre = T[i] = T[i - 1]; for(int j = 0 ; j < Q[0][i].size(); j ++){ int v = Q[0][i][j]; update(T[i],pre,1,M,v,1); pre = T[i]; } for(int j = 0 ; j < Q[1][i].size(); j ++){ int v = Q[1][i][j]; update(T[i],pre,1,M,v,-1); pre = T[i]; } } LL Pre = 1; for(int i = 1; i <= N ; i ++){ LL X = read(),A = read(),B = read(),C = read(); LL K = (A * Pre + B) % C + 1; if(K >= tree[T[X]].cnt) Pre = tree[T[X]].sum; else Pre = query(T[X],1,M,K); Prl(Pre); } return 0; }