题意:一条封闭折线将平面分成了若干个区域,按顺序给出折线各点的坐标,要求输出封闭折线的轮廓。
题解:用类似卷包裹的算法,先确定一个一定会被选中的点(x坐标最小,y坐标最小)作为起点,然后把可能是下一个极点(凸包顶点)的点都存起来,下一个极点有可能是当前点所在线段的前一个点和后一个点或当前点所在线段和其他线段的有交点的线段的起点和终点。
找出最右侧的点(用角度判断)和当前点的连线是否和其他线段有交点,如果有就找最近的交点当做答案的下一个点,如果没有最右侧的点就是下一个点。最后转回起点结束。
1 #include <cstdio> 2 #include <cstring> 3 #include <cmath> 4 #include <algorithm> 5 using namespace std; 6 const double PI = acos(-1); 7 const double eps = 1e-9; 8 struct Point 9 { 10 double x, y; 11 Point(double x = 0, double y = 0): x(x), y(y) {} 12 }; 13 typedef Point Vector; 14 double dcmp(double x) 15 { 16 if (fabs(x) < eps) 17 return 0; 18 return x < 0 ? -1 : 1; 19 } 20 Vector operator + (const Point& A, const Point& B) 21 { 22 return Vector(A.x + B.x, A.y + B.y); 23 } 24 Vector operator - (const Point& A, const Point& B) 25 { 26 return Vector(A.x - B.x, A.y - B.y); 27 } 28 Vector operator * (const Point& A, double a) 29 { 30 return Vector(A.x * a, A.y * a); 31 } 32 Vector operator / (const Point& A, double a) 33 { 34 return Vector(A.x / a, A.y / a); 35 } 36 double Cross(const Vector& A, const Vector& B) 37 { 38 return A.x * B.y - A.y * B.x; 39 } 40 double Dot(const Vector& A, const Vector& B) 41 { 42 return A.x * B.x + A.y * B.y; 43 } 44 double Length(const Vector& A) 45 { 46 return sqrt(Dot(A, A)); 47 } 48 bool operator < (const Point& A, const Point& B) 49 { 50 return A.x < B.x || (A.x == B.x && A.y < B.y); 51 } 52 bool operator == (const Point& A, const Point& B) 53 { 54 return A.x == B.x && A.y == B.y; 55 } 56 Point GetLineIntersection(Point P, Point v, Point Q, Point w) 57 { 58 Point u = P - Q; 59 double t = Cross(w, u) / Cross(v, w); 60 return P + v * t; 61 } 62 bool SegmentProperIntersection(const Point& a1, const Point& a2, const Point& b1, const Point& b2) 63 { 64 double c1 = Cross(a2 - a1, b1 - a1); 65 double c2 = Cross(a2 - a1, b2 - a1); 66 double c3 = Cross(b2 - b1, a1 - b1); 67 double c4 = Cross(b2 - b1, a2 - b1); 68 return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0; 69 } 70 bool OnSegment(const Point& p, const Point& a1, const Point& a2) 71 { 72 return dcmp(Cross(a1 - p, a2 - p)) == 0 && dcmp(Dot(a1 - p, a2 - p)) < 0; 73 } 74 75 const int N = 10005; 76 const int M = 205; 77 Point P[M], res[N], temp[M]; 78 double ang[M], s; 79 int n, cnt; 80 81 void add(Point a, Point b) 82 { 83 temp[cnt] = a; 84 ang[cnt] = atan2(temp[cnt].y - b.y, temp[cnt].x - b.x) - s; 85 while (dcmp(ang[cnt]) <= 0) 86 ang[cnt] += 2 * PI; 87 cnt++; 88 } 89 90 int main() 91 { 92 while (scanf("%d", &n) == 1) 93 { 94 int minid = 0; 95 for (int i = 0; i < n; i++) 96 { 97 scanf("%lf%lf", &P[i].x, &P[i].y); 98 if (P[i] < P[minid]) 99 minid = i; 100 } 101 res[0] = P[minid]; 102 int num = 1; 103 s = -PI; 104 while (1) 105 { 106 cnt = 0; 107 for (int i = 0; i < n; i++) 108 { 109 if (res[num - 1] == P[i]) 110 { 111 add(P[(i + 1) % n], res[num - 1]); 112 add(P[(i + n - 1) % n], res[num - 1]); 113 break; 114 } 115 } 116 for (int i = 0; i < n; i++) 117 { 118 if (OnSegment(res[num - 1], P[i], P[(i + 1) % n])) 119 { 120 add(P[(i + 1) % n], res[num - 1]); 121 add(P[i], res[num - 1]); 122 } 123 } 124 int id = 0; 125 for (int i = 0; i < cnt; i++) 126 if (ang[i] < ang[id]) 127 id = i; 128 double minlen = 1e9; 129 Point RP = temp[id], its; 130 for (int i = 0; i < n; i++) 131 { 132 if (SegmentProperIntersection(temp[id], res[num - 1], P[i], P[(i + 1) % n])) 133 { 134 its = GetLineIntersection(temp[id], temp[id] - res[num - 1], P[i], P[i] - P[(i + 1) % n]); 135 if (Length(its - res[num - 1]) < minlen) 136 { 137 minlen = Length(its - res[num - 1]); 138 RP = its; 139 } 140 } 141 } 142 res[num] = RP; 143 s = atan2(res[num - 1].y - res[num].y, res[num - 1].x - res[num].x); 144 num++; 145 if (res[num - 1] == res[0]) 146 break; 147 } 148 printf("%d ", num - 1); 149 for (int i = 0; i < num - 1; i++) 150 printf("%.4lf %.4lf ", res[i].x, res[i].y); 151 } 152 return 0; 153 }
后一种解法是用PSLG的外轮廓。
1 #include<cstdio> 2 #include<vector> 3 #include<cmath> 4 #include<algorithm> 5 #include<cstring> 6 #include<cassert> 7 using namespace std; 8 9 const double eps = 1e-8; 10 double dcmp(double x) 11 { 12 if(fabs(x) < eps) return 0; 13 else return x < 0 ? -1 : 1; 14 } 15 16 struct Point 17 { 18 double x, y; 19 Point(double x=0, double y=0):x(x),y(y) { } 20 }; 21 22 typedef Point Vector; 23 24 Vector operator + (Vector A, Vector B) 25 { 26 return Vector(A.x+B.x, A.y+B.y); 27 } 28 29 Vector operator - (Point A, Point B) 30 { 31 return Vector(A.x-B.x, A.y-B.y); 32 } 33 34 Vector operator * (Vector A, double p) 35 { 36 return Vector(A.x*p, A.y*p); 37 } 38 39 // 理论上这个“小于”运算符是错的,因为可能有三个点a, b, c, a和b很接近(即a<b好b<a都不成立),b和c很接近,但a和c不接近 40 // 所以使用这种“小于”运算符的前提是能排除上述情况 41 bool operator < (const Point& a, const Point& b) 42 { 43 return dcmp(a.x - b.x) < 0 || (dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) < 0); 44 } 45 46 bool operator == (const Point& a, const Point &b) 47 { 48 return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0; 49 } 50 51 double Dot(Vector A, Vector B) 52 { 53 return A.x*B.x + A.y*B.y; 54 } 55 double Cross(Vector A, Vector B) 56 { 57 return A.x*B.y - A.y*B.x; 58 } 59 double Length(Vector A) 60 { 61 return sqrt(Dot(A, A)); 62 } 63 64 typedef vector<Point> Polygon; 65 66 Point GetLineIntersection(const Point& P, const Vector& v, const Point& Q, const Vector& w) 67 { 68 Vector u = P-Q; 69 double t = Cross(w, u) / Cross(v, w); 70 return P+v*t; 71 } 72 73 bool SegmentProperIntersection(const Point& a1, const Point& a2, const Point& b1, const Point& b2) 74 { 75 double c1 = Cross(a2-a1,b1-a1), c2 = Cross(a2-a1,b2-a1), 76 c3 = Cross(b2-b1,a1-b1), c4=Cross(b2-b1,a2-b1); 77 return dcmp(c1)*dcmp(c2)<0 && dcmp(c3)*dcmp(c4)<0; 78 } 79 80 bool OnSegment(Point p, Point a1, Point a2) 81 { 82 return dcmp(Cross(a1-p, a2-p)) == 0 && dcmp(Dot(a1-p, a2-p)) < 0; 83 } 84 85 // 多边形的有向面积 86 double PolygonArea(Polygon poly) 87 { 88 double area = 0; 89 int n = poly.size(); 90 for(int i = 1; i < n-1; i++) 91 area += Cross(poly[i]-poly[0], poly[(i+1)%n]-poly[0]); 92 return area/2; 93 } 94 95 struct Edge 96 { 97 int from, to; // 起点,终点,左边的面编号 98 double ang; 99 }; 100 101 const int maxn = 10000 + 10; // 最大边数 102 103 // 平面直线图(PSGL)实现 104 struct PSLG 105 { 106 int n, m, face_cnt; 107 double x[maxn], y[maxn]; 108 vector<Edge> edges; 109 vector<int> G[maxn]; 110 int vis[maxn*2]; // 每条边是否已经访问过 111 int left[maxn*2]; // 左面的编号 112 int prev[maxn*2]; // 相同起点的上一条边(即顺时针旋转碰到的下一条边)的编号 113 114 vector<Polygon> faces; 115 double area[maxn]; // 每个polygon的面积 116 117 void init(int n) 118 { 119 this->n = n; 120 for(int i = 0; i < n; i++) G[i].clear(); 121 edges.clear(); 122 faces.clear(); 123 } 124 125 // 有向线段from->to的极角 126 double getAngle(int from, int to) 127 { 128 return atan2(y[to]-y[from], x[to]-x[from]); 129 } 130 131 void AddEdge(int from, int to) 132 { 133 edges.push_back((Edge) 134 { 135 from, to, getAngle(from, to) 136 }); 137 edges.push_back((Edge) 138 { 139 to, from, getAngle(to, from) 140 }); 141 m = edges.size(); 142 G[from].push_back(m-2); 143 G[to].push_back(m-1); 144 } 145 146 // 找出faces并计算面积 147 void Build() 148 { 149 for(int u = 0; u < n; u++) 150 { 151 // 给从u出发的各条边按极角排序 152 int d = G[u].size(); 153 for(int i = 0; i < d; i++) 154 for(int j = i+1; j < d; j++) // 这里偷个懒,假设从每个点出发的线段不会太多 155 if(edges[G[u][i]].ang > edges[G[u][j]].ang) swap(G[u][i], G[u][j]); 156 for(int i = 0; i < d; i++) 157 prev[G[u][(i+1)%d]] = G[u][i]; 158 } 159 160 memset(vis, 0, sizeof(vis)); 161 face_cnt = 0; 162 for(int u = 0; u < n; u++) 163 for(int i = 0; i < G[u].size(); i++) 164 { 165 int e = G[u][i]; 166 if(!vis[e]) // 逆时针找圈 167 { 168 face_cnt++; 169 Polygon poly; 170 for(;;) 171 { 172 vis[e] = 1; 173 left[e] = face_cnt; 174 int from = edges[e].from; 175 poly.push_back(Point(x[from], y[from])); 176 e = prev[e^1]; 177 if(e == G[u][i]) break; 178 assert(vis[e] == 0); 179 } 180 faces.push_back(poly); 181 } 182 } 183 184 for(int i = 0; i < faces.size(); i++) 185 { 186 area[i] = PolygonArea(faces[i]); 187 } 188 } 189 }; 190 191 PSLG g; 192 193 const int maxp = 100 + 5; 194 int n, c; 195 Point P[maxp]; 196 197 Point V[maxp*(maxp-1)/2+maxp]; 198 199 // 在V数组里找到点p 200 int ID(Point p) 201 { 202 return lower_bound(V, V+c, p) - V; 203 } 204 205 // 假定poly没有相邻点重合的情况,只需要删除三点共线的情况 206 Polygon simplify(const Polygon& poly) 207 { 208 Polygon ans; 209 int n = poly.size(); 210 for(int i = 0; i < n; i++) 211 { 212 Point a = poly[i]; 213 Point b = poly[(i+1)%n]; 214 Point c = poly[(i+2)%n]; 215 if(dcmp(Cross(a-b, c-b)) != 0) ans.push_back(b); 216 } 217 return ans; 218 } 219 220 void build_graph() 221 { 222 c = n; 223 for(int i = 0; i < n; i++) 224 V[i] = P[i]; 225 226 vector<double> dist[maxp]; // dist[i][j]是第i条线段上的第j个点离起点(P[i])的距离 227 for(int i = 0; i < n; i++) 228 for(int j = i+1; j < n; j++) 229 if(SegmentProperIntersection(P[i], P[(i+1)%n], P[j], P[(j+1)%n])) 230 { 231 Point p = GetLineIntersection(P[i], P[(i+1)%n]-P[i], P[j], P[(j+1)%n]-P[j]); 232 V[c++] = p; 233 dist[i].push_back(Length(p - P[i])); 234 dist[j].push_back(Length(p - P[j])); 235 } 236 237 // 为了保证“很接近的点”被看作同一个,这里使用了sort+unique的方法 238 // 必须使用前面提到的“理论上是错误”的小于运算符,否则不能保证“很接近的点”在排序后连续排列 239 // 另一个常见的处理方式是把坐标扩大很多倍(比如100000倍),然后四舍五入变成整点(计算完毕后再还原),用少许的精度损失换来鲁棒性和速度。 240 sort(V, V+c); 241 c = unique(V, V+c) - V; 242 243 g.init(c); // c是平面图的点数 244 for(int i = 0; i < c; i++) 245 { 246 g.x[i] = V[i].x; 247 g.y[i] = V[i].y; 248 } 249 for(int i = 0; i < n; i++) 250 { 251 Vector v = P[(i+1)%n] - P[i]; 252 double len = Length(v); 253 dist[i].push_back(0); 254 dist[i].push_back(len); 255 sort(dist[i].begin(), dist[i].end()); 256 int sz = dist[i].size(); 257 for(int j = 1; j < sz; j++) 258 { 259 Point a = P[i] + v * (dist[i][j-1] / len); 260 Point b = P[i] + v * (dist[i][j] / len); 261 if(a == b) continue; 262 g.AddEdge(ID(a), ID(b)); 263 } 264 } 265 266 g.Build(); 267 268 Polygon poly; 269 for(int i = 0; i < g.faces.size(); i++) 270 if(g.area[i] < 0) // 对于连通图,惟一一个面积小于零的面是无限面 271 { 272 poly = g.faces[i]; 273 reverse(poly.begin(), poly.end()); // 对于内部区域来说,无限面多边形的各个顶点是顺时针的 274 poly = simplify(poly); // 无限面多边形上可能会有相邻共线点 275 break; 276 } 277 278 int m = poly.size(); 279 printf("%d ", m); 280 281 // 挑选坐标最小的点作为输出的起点 282 int start = 0; 283 for(int i = 0; i < m; i++) 284 if(poly[i] < poly[start]) start = i; 285 for(int i = start; i < m; i++) 286 printf("%.4lf %.4lf ", poly[i].x, poly[i].y); 287 for(int i = 0; i < start; i++) 288 printf("%.4lf %.4lf ", poly[i].x, poly[i].y); 289 } 290 291 int main() 292 { 293 while(scanf("%d", &n) == 1 && n) 294 { 295 for(int i = 0; i < n; i++) 296 { 297 int x, y; 298 scanf("%d%d", &x, &y); 299 P[i] = Point(x, y); 300 } 301 build_graph(); 302 } 303 return 0; 304 }