zoukankan      html  css  js  c++  java
  • Spark On Yarn的两种模式yarn-cluster和yarn-client深度剖析

    Spark On Yarn的优势

    每个Spark executor作为一个YARN容器(container)运行。Spark可以使得多个Tasks在同一个容器(container)里面运行
    1. Spark支持资源动态共享,运行于Yarn的框架都共享一个集中配置好的资源池
    2. 可以很方便的利用Yarn的资源调度特性来做分类、隔离以及优先级控制负载,拥有更灵活的调度策略
    3. Yarn可以自由地选择executor数量
    4. Yarn是唯一支持Spark安全的集群管理器,使用Yarn,Spark可以运行于Kerberized Hadoop之上,在它们进程之间进行安全认证

      

    我们知道Spark on yarn有两种模式:yarn-cluster和yarn-client。这两种模式作业虽然都是在yarn上面运行,但是其中的运行方式很不一样,今天就来谈谈Spark on YARN yarn-client模式作业从提交到运行的过程剖析

    相关概念

    • Application: Appliction都是指用户编写的Spark应用程序,其中包括一个Driver功能的代码和分布在集群中多个节点上运行的Executor代码
    • Driver:  Spark中的Driver即运行上述Application的main函数并创建SparkContext,创建SparkContext的目的是为了准备Spark应用程序的运行环境,在Spark中有SparkContext负责与ClusterManager通信,进行资源申请、任务的分配和监控等,当Executor部分运行完毕后,Driver同时负责将SparkContext关闭,通常用SparkContext代表Driver
    • Executor:  某个Application运行在worker节点上的一个进程,  该进程负责运行某些Task, 并且负责将数据存到内存或磁盘上,每个Application都有各自独立的一批Executor, 在Spark on Yarn模式下,其进程名称为CoarseGrainedExecutor Backend。一个CoarseGrainedExecutor Backend有且仅有一个Executor对象, 负责将Task包装成taskRunner,并从线程池中抽取一个空闲线程运行Task, 这个每一个oarseGrainedExecutor Backend能并行运行Task的数量取决与分配给它的cpu个数
    • Cluter Manager:指的是在集群上获取资源的外部服务。目前有三种类型
      1. Standalon : spark原生的资源管理,由Master负责资源的分配
      2. Apache Mesos:与hadoop MR兼容性良好的一种资源调度框架
      3. Hadoop Yarn: 主要是指Yarn中的ResourceManager
    • Worker: 集群中任何可以运行Application代码的节点,在Standalone模式中指的是通过slave文件配置的Worker节点,在Spark on Yarn模式下就是NoteManager节点
    • Task: 被送到某个Executor上的工作单元,但hadoopMR中的MapTask和ReduceTask概念一样,是运行Application的基本单位,多个Task组成一个Stage,而Task的调度和管理等是由TaskScheduler负责
    • Job: 包含多个Task组成的并行计算,往往由Spark Action触发生成, 一个Application中往往会产生多个Job
    • Stage: 每个Job会被拆分成多组Task, 作为一个TaskSet, 其名称为Stage,Stage的划分和调度是有DAGScheduler来负责的,Stage有非最终的Stage(Shuffle Map Stage)和最终的Stage(Result Stage)两种,Stage的边界就是发生shuffle的地方
    • DAGScheduler: 根据Job构建基于Stage的DAG(Directed Acyclic Graph有向无环图),并提交Stage给TASkScheduler。 其划分Stage的依据是RDD之间的依赖的关系找出开销最小的调度方法,如下图
    • TASKSedulter: 将TaskSET提交给worker运行,每个Executor运行什么Task就是在此处分配的. TaskScheduler维护所有TaskSet,当Executor向Driver发生心跳时,TaskScheduler会根据资源剩余情况分配相应的Task。另外TaskScheduler还维护着所有Task的运行标签,重试失败的Task。下图展示了TaskScheduler的作用
    • 在不同运行模式中任务调度器具体为:
      1. Spark on Standalone模式为TaskScheduler
      2. YARN-Client模式为YarnClientClusterScheduler
      3. YARN-Cluster模式为YarnClusterScheduler
    • 将这些术语串起来的运行层次图如下:
    • Job=多个stage,Stage=多个同种task, Task分为ShuffleMapTask和ResultTask,Dependency分为ShuffleDependency和NarrowDependency

     

    Spark运行模式:


    • Spark的运行模式多种多样,灵活多变,部署在单机上时,既可以用本地模式运行,也可以用伪分布模式运行,而当以分布式集群的方式部署时,也有众多的运行模式可供选择,这取决于集群的实际情况,底层的资源调度即可以依赖外部资源调度框架,也可以使用Spark内建的Standalone模式。
    • 对于外部资源调度框架的支持,目前的实现包括相对稳定的Mesos模式,以及hadoop YARN模式
    • 本地模式:常用于本地开发测试,本地还分别 local 和 local cluster

     

    YARN-Client

    在Yarn-client中,Driver运行在Client上,通过ApplicationMaster向RM获取资源。本地Driver负责与所有的executor container进行交互,并将最后的结果汇总。结束掉终端,相当于kill掉这个spark应用。

    因为Driver在客户端,所以可以通过webUI访问Driver的状态,默认是http://hadoop1:4040访问,而YARN通过http:// hadoop1:8088访问

    • YARN-client的工作流程步骤为:

     

    • Spark Yarn Client向YARN的ResourceManager申请启动Application Master。同时在SparkContent初始化中将创建DAGScheduler和TASKScheduler等,由于我们选择的是Yarn-Client模式,程序会选择YarnClientClusterScheduler和YarnClientSchedulerBackend
    • ResourceManager收到请求后,在集群中选择一个NodeManager,为该应用程序分配第一个Container,要求它在这个Container中启动应用程序的ApplicationMaster,与YARN-Cluster区别的是在该ApplicationMaster不运行SparkContext,只与SparkContext进行联系进行资源的分派
    • Client中的SparkContext初始化完毕后,与ApplicationMaster建立通讯,向ResourceManager注册,根据任务信息向ResourceManager申请资源(Container)
    • 一旦ApplicationMaster申请到资源(也就是Container)后,便与对应的NodeManager通信,要求它在获得的Container中启动CoarseGrainedExecutorBackend,CoarseGrainedExecutorBackend启动后会向Client中的SparkContext注册并申请Task
    • client中的SparkContext分配Task给CoarseGrainedExecutorBackend执行,CoarseGrainedExecutorBackend运行Task并向Driver汇报运行的状态和进度,以让Client随时掌握各个任务的运行状态,从而可以在任务失败时重新启动任务
    • 应用程序运行完成后,Client的SparkContext向ResourceManager申请注销并关闭自己

    因为是与Client端通信,所以Client不能关闭。

     客户端的Driver将应用提交给Yarn后,Yarn会先后启动ApplicationMaster和executor,另外ApplicationMaster和executor都 是装载在container里运行,container默认的内存是1G,ApplicationMaster分配的内存是driver- memory,executor分配的内存是executor-memory。同时,因为Driver在客户端,所以程序的运行结果可以在客户端显 示,Driver以进程名为SparkSubmit的形式存在。

    Yarn-Cluster

    • 在YARN-Cluster模式中,当用户向YARN中提交一个应用程序后,YARN将分两个阶段运行该应用程序:
    1. 第一个阶段是把Spark的Driver作为一个ApplicationMaster在YARN集群中先启动;
    2. 第二个阶段是由ApplicationMaster创建应用程序,然后为它向ResourceManager申请资源,并启动Executor来运行Task,同时监控它的整个运行过程,直到运行完成

    应用的运行结果不能在客户端显示(可以在history server中查看),所以最好将结果保存在HDFS而非stdout输出,客户端的终端显示的是作为YARN的job的简单运行状况,下图是yarn-cluster模式

    执行过程: 

    • Spark Yarn Client向YARN中提交应用程序,包括ApplicationMaster程序、启动ApplicationMaster的命令、需要在Executor中运行的程序等
    • ResourceManager收到请求后,在集群中选择一个NodeManager,为该应用程序分配第一个Container,要求它在这个Container中启动应用程序的ApplicationMaster,其中ApplicationMaster进行SparkContext等的初始化
    • ApplicationMaster向ResourceManager注册,这样用户可以直接通过ResourceManage查看应用程序的运行状态,然后它将采用轮询的方式通过RPC协议为各个任务申请资源,并监控它们的运行状态直到运行结束
    • 一旦ApplicationMaster申请到资源(也就是Container)后,便与对应的NodeManager通信,要求它在获得的Container中启动CoarseGrainedExecutorBackend,而Executor对象的创建及维护是由CoarseGrainedExecutorBackend负责的,CoarseGrainedExecutorBackend启动后会向ApplicationMaster中的SparkContext注册并申请Task。这一点和Standalone模式一样,只不过SparkContext在Spark Application中初始化时,使用CoarseGrainedSchedulerBackend配合YarnClusterScheduler进行任务的调度,其中YarnClusterScheduler只是对TaskSchedulerImpl的一个简单包装,增加了对Executor的等待逻辑等
    • ApplicationMaster中的SparkContext分配Task给CoarseGrainedExecutorBackend执行,CoarseGrainedExecutorBackend运行Task并向ApplicationMaster汇报运行的状态和进度,以让ApplicationMaster随时掌握各个任务的运行状态,从而可以在任务失败时重新启动任务
    • 应用程序运行完成后,ApplicationMaster向ResourceManager申请注销并关闭自己

     

    比以前的更多的理解: 
    (1)Application Master所在的NodeManager是Yarn随机分配的,不是在主节点上,下图是实验室集群上跑得一个Spark程序,tseg0是主节点,tseg1~tseg4是workers,IP10.103.240.29指的是tseg3: 

    (2)在上图还可以看出,executor的容器和AM容器是可以共存的,它们的封装都是容器; 
    (3)AM是Yarn启动的第一个容器; 
    (4)AM所在的NodeManager就是平常说的Driver端,因为这个AM启动了SparkContext,之前实验室说的“谁初始化的SparkContext谁就是Driver端”一直理解错了,以为这句话是相对于机器说的,但其实是相对于Cluster和Client的集群模式来说的(不知道其他模式Mesos、standalone是不是也是这样)。 
    (5)在Application提交到RM上之后,Client就可以关闭了,集群会继续运行提交的程序,在实际使用时,有时候会看到这样一种现象,关闭Client会导致程序终止,其实这个Application还没有提交上去,关闭Client打断了提交的过程,Application当然不会运行。

    YARN-Cluster和YARN-Client的区别

    • 理解YARN-Client和YARN-Cluster深层次的区别之前先清楚一个概念:Application Master。在YARN中,每个Application实例都有一个ApplicationMaster进程,它是Application启动的第一个容器。它负责和ResourceManager打交道并请求资源,获取资源之后告诉NodeManager为其启动Container。从深层次的含义讲YARN-Cluster和YARN-Client模式的区别其实就是ApplicationMaster进程的区别
    • YARN-Cluster模式下,Driver运行在AM(Application Master)中,它负责向YARN申请资源,并监督作业的运行状况。当用户提交了作业之后,就可以关掉Client,作业会继续在YARN上运行,因而YARN-Cluster模式不适合运行交互类型的作业
    • YARN-Client模式下,Application Master仅仅向YARN请求Executor,Client会和请求的Container通信来调度他们工作,也就是说Client不能离开

    (1)YarnCluster的Driver是在集群的某一台NM上,但是Yarn-Client就是在RM的机器上; 
    (2)而Driver会和Executors进行通信,所以Yarn_cluster在提交App之后可以关闭Client,而Yarn-Client不可以; 
    (3)Yarn-Cluster适合生产环境,Yarn-Client适合交互和调试。

     下表是Spark Standalone与Spark On Yarn模式下的比较

     

    Reference

    1. 《Spark技术内幕-深入解析Spark内核、架构设计与实现原理》
    2. Spark Yarn-cluster与Yarn-client
    3. Spark:Yarn Cluster 和Yarn Client的区别和联系
    4. Spark on YARN两种运行模式介绍
    5. Apache Spark Resource Management and YARN App Models
  • 相关阅读:
    课程设计——五子棋(201521123038)
    JAVA课程设计——单机版五子棋
    201521123038 《Java程序设计》 第十四周学习总结
    201521123038 《Java程序设计》 第十三周学习总结
    网络15软工个人作业5——软件工程总结
    201521123035-个人作业4——alpha阶段个人总结
    201521123035个人作业3
    201521123035结对编程
    201521123035软工阅读作业2
    软件工程个人阅读作业1
  • 原文地址:https://www.cnblogs.com/ITtangtang/p/7967386.html
Copyright © 2011-2022 走看看