Number Sequence
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 24928 Accepted Submission(s):
10551
Problem Description
Given two sequences of numbers : a[1], a[2], ...... ,
a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <=
1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] =
b[2], ...... , a[K + M - 1] = b[M]. If there are more than one K exist, output
the smallest one.
Input
The first line of input is a number T which indicate
the number of cases. Each case contains three lines. The first line is two
numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second
line contains N integers which indicate a[1], a[2], ...... , a[N]. The third
line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers
are in the range of [-1000000, 1000000].
Output
For each test case, you should output one line which
only contain K described above. If no such K exists, output -1
instead.
Sample Input
2
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 1 3
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 2 1
Sample Output
6
-1
Source
思路:
kmp模板;
来,上代码:
#include<iostream> #include<cstring> #include<cstdlib> #include<cstdio> using namespace std; const int N = 1000002; int nest[1000002],n,m; int s[1000002],t[1000002]; int slen,tlen; void getnest() { memset(nest,0,sizeof(nest)); int j,k; j=0;k=-1;nest[0]=-1; while(j<tlen) { if(k==-1||t[j]==t[k]) nest[++j]=++k; else k=nest[k]; } } int kmp_index() { int i=0;int j=0; getnest(); while(i<slen&&j<tlen) { if(j==-1||s[i]==t[j]) { i++;j++; } else j=nest[j]; } if(j==tlen) return i-tlen+1; else return -1; } int kmp_count() { int ans=0; int i,j=0; if(slen==1&&tlen==1) { if(s[0]==t[0]) return 1; else return 0; } getnest(); for(i=0;i<slen;i++) { while(j>0&&s[i]!=t[j]) { j=nest[j]; } if(s[i]==t[j]) j++; if(j==tlen) { ans++; j=nest[j]; } } return ans; } int main() { int TT; int i,cc; cin>>TT; while(TT--) { cin>>n>>m; for(int i=0;i<n;i++) cin>>s[i]; for(int j=0;j<m;j++) cin>>t[j]; tlen=m,slen=n; cout<<kmp_index()<<endl; } return 0; }