原题链接
爆搜水题,数据小,连剪枝也不用。
对于每个油滴,扩展的最大半径即是对圆心到(x)边界的距离、圆心到(y)边界的距离、与每个已经扩展的油滴圆心距离减去该油滴扩展的半径 取最小值,注意对(0)取(max)。
#include<cstdio>
#include<cmath>
using namespace std;
const int N = 10;
const double pi = 3.14159265358979323846;
struct dd{
int x, y, pre, suc;
};
dd a[N];
int sta[N], sqlx, sqly, sqrx, sqry, n, tp;
double dis[N][N], edg[N], R[N], ma;
inline int re()
{
int x = 0;
char c = getchar();
bool p = 0;
for (; c < '0' || c > '9'; c = getchar())
p |= c == '-';
for (; c >= '0' && c <= '9'; c = getchar())
x = x * 10 + c - '0';
return p ? -x : x;
}
inline double minn(double x, double y)
{
return x < y ? x : y;
}
inline double maxn(double x, double y)
{
return x > y ? x : y;
}
inline double js(double x)
{
return x < 0 ? -x : x;
}
inline void de(int x)
{
a[a[x].pre].suc = a[x].suc;
a[a[x].suc].pre = a[x].pre;
}
inline void con(int x)
{
a[a[x].pre].suc = x;
a[a[x].suc].pre = x;
}
void dfs(int x, double s)
{
if (!(x ^ n))
ma = maxn(ma, s);
int i, j;
double r;
for (i = a[0].suc; i <= n; i = a[i].suc)
{
r = edg[i];
for (j = 1; j <= tp; j++)
r = minn(r, maxn(dis[i][sta[j]] - R[j], 0));
sta[++tp] = i;
R[tp] = r;
de(i);
dfs(x + 1, s + pi * r * r);
con(i);
tp--;
}
}
int main()
{
int i, j;
n = re();
sqlx = re();
sqly = re();
sqrx = re();
sqry = re();
for (i = 1, a[0].suc = 1, a[n + 1].pre = n; i <= n; i++)
{
a[i].x = re();
a[i].y = re();
a[i].pre = i - 1;
a[i].suc = i + 1;
}
for (i = 1; i < n; i++)
for (j = i + 1; j <= n; j++)
dis[i][j] = dis[j][i] = sqrt(1.0 * (a[i].x - a[j].x) * (a[i].x - a[j].x) + 1.0 * (a[i].y - a[j].y) * (a[i].y - a[j].y));
for (i = 1; i <= n; i++)
edg[i] = minn(minn(js(a[i].x - sqlx), js(a[i].x - sqrx)), minn(js(a[i].y - sqly), js(a[i].y - sqry)));
dfs(0, 0);
printf("%.0f", js(sqlx - sqrx) * js(sqly - sqry) - ma);
return 0;
}